

DeepCSR: A 3D Deep Learning Approach For Cortical Surface Reconstruction

Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, and Olivier Salvado

WACV21 - January 5 - 9, 2021

rodrigo.santacruz@csiro.au

www.rfsantacruz.com

Cortical Surface Reconstruction From MRI (CSR)

"The diagnosis, prognosis, and study of neurodegenerative diseases, as well as many psychological disorders, rely on the analysis of *in vivo* measurements on the **cerebral cortex** using magnetic resonance imaging (MRI)."

Existing Methods & DeepCSR

DeepCSR - Learning

Using a dataset of image and surface pairs:

DeepCSR learns to predict implicit surfaces:

$$f_{ heta}: \mathcal{I} imes \Omega \mapsto \mathbb{R}$$

 $egin{aligned} extbf{Occupancy Field} \ r_S^{occ}(p) = \mathbf{1}_{p \in S_{int}} \end{aligned}$

$$r_S^{sdf}(p) = (2 \left. r_S^{occ}(p) - 1
ight) igg| igg| p - \mathrm{proj}_S(p) igg|_2$$

DeepCSR - Inference

x ₀	y _o	z _o
X ₁	y ₁	z ₁
•	•	•
Χ	y _n	Z.

NN Architecture & Hypercolumns Features

Comparison to FreeSurfer And FastSurfer

Precision:

- Test-Retest dataset (TRT): 120 T1-weighted MRI scans from 3 subjects which are scanned twice in 20 sessions spanning 31 days.
- The goal is to evaluate the reproducibility of the algorithms.

Accuracy:

- Multi-Atlas Labelling Challenge (MALC) dataset: 30 brain volumes manually segmented by experts using the NeuroMorphometric labelling schema for the whole brain.
- We compare the algorithms on the segmentation of the brain cortex generated by the reconstructed surfaces.

Reconstruction Time:

 We report the average elapsed time to reconstruct the cortical surfaces of the MRI scans in the MALC dataset.

Comparison to FreeSurfer

	Precision on TRT			Accuracy on MALC		Runtime
Method	$AD(m\overline{m})$	$% > 1 \ mm$	$\sqrt{\%} > 2mm$	Dice	VS	(minutes)
FreeSurfer	0.241	2.472	0.983	0.841	0.953	373.86
	(± 0.291)			(± 0.020)	(± 0.027)	(± 47.64)
FastSurfer	0.204	1.492	0.374	0.834	0.942	28.943
	(± 0.028)			(± 0.021)	(± 0.029)	(± 13.281)
DeepCSR	0.193	1.266	0.263	0.846	0.958	27.824
	(± 0.051)			(± 0.019)	(± 0.024)	(± 1.393)

- **DeepCSR** has **better reproducibility** which is critical for medical studies of neurodegenerative diseases.
- DeepCSR provides brain cortex segmentation with greater overlap and more similar volume to the manually annotated data.
- **DeepCSR** is at least thirteen times **faster** than FreeSurfer. It also presents **less runtime** variation across subjects than FastSurfer .

DeepCSR: A 3D Deep Learning Approach For Cortical Surface Reconstruction

Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, and Olivier Salvado

WACV21 - January 5 - 9, 2021

rodrigo.santacruz@csiro.au

www.rfsantacruz.com

