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Motivation

Albatross Frigatebird

Which one is an albatros?

Frigatebirds seem black albatrosses with white or red pouch.
Which one is a frigatebird? 

The human recognition system is fundamentally compositional, so 
unseen visual complex concepts are recognized from the composition 
of simple visual primitives according to well-defined rules.

Albatrosses are birds with hooked beak and large wingspan. 
(hooked beak AND large wingspan)

(albatross AND (white pouch OR red pouch)

Can we learn how to compose classifiers for unseen 
complex concepts from simple visual primitives? 
Can we develop an algebra for composition of primitives?
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● Visual primitives (p): known simple visual concepts.
● Composition rules: (∧, AND) conjunction, (∨, OR) disjunction, and 

(¬, NOT) negation.
● Expressions (e): visual concepts expressed as multiple compositions 

of primitives and composition rules.

Large 
wingspan (lw)

Hooked 
beak (hb)

Albatross (A) ?

Gull (G)?

G = (NOT lw) and hb

A = lw and hb
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Compositional Model
We propose to learn a function fϴ(·) that maps the space of expressions to 
the space of binary classifiers:

Albatross (A)Large 
wingspan (lw)

Hooked 
beak (hb) Gull (G)

G = (NOT lw) and hb

A = lw and hb

fϴ(●)

We use a relative small subset of training expressions and rely on the classifier 
similarity to generalize for unknown expressions.
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positives and negatives images of the primitives.
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● Synthesizes classifiers for any concept that can be expressed as a boolean 
expression of primitives.

● Explores correlations, cooccurrences, and contextuality between visual primitives.
● Leverages semantic similarity and compositionality.
● Learns from a subset of expressions and relies on the classifier similarity to 

generalize for unknown expressions.

Our method...

Approach
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We use a relative small subset of training expressions and rely on the 
classifier similarity to generalize for unknown expressions.
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Baselines:
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● P(a OR b) = P(a) + P(b) - (P(a) x P(b))
● P(NOT a) = 1 - P(a)
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Our method consistently  outperforms the baselines in two attributes datasets (CUB200  
and AWA2).
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It works as well as the supervised approach with known expressions.
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Quantitative Experiments
Complex Unknown Expressions: (p1 ∨ q1 ) ∧ (p2 ∨ q2 ) ∧ … where p and 
q are visual primitives which may appear negated and c (complexity) is the 
number of simple terms in those expressions.

Figure: Performance of the proposed method and baselines on classifying images of CUB-200 dataset according to unknown 
expressions of different complexity in conjunctive normal form.
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Quantitative Experiments

Figure: Performance of the proposed method and baselines on classifying images of AWA2 dataset according to unknown 
expressions of different complexity in conjunctive normal form.
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