OR OBOTIC VISION

1 - INTRODUCTION & MOTIVATION

• Which one is the **albatross**? Albatrosses are birds with hooked beak and large wingspan. (hooked beak AND large wingspan)

• Which ones is the frigatebird?

Frigatebirds seem black albatrosses with white or red pouch. (albatross AND (white pouch OR red pouch)

"The human recognition system is fundamentally compositional, so the unseen complex concepts are recognized from the composition of simple visual primitives according to well-defined rules."

2 - GOALS & CONTRIBUTIONS

We aim to develop a learning framework to synthesize classifiers for arbitrary compositions of visual primitives.

Contributions:

- Learning framework for composition of classifiers.
- Compositional neural network based model which minimizes the classification error of a subset of visual compositions and generalizes for unseen compositions.
- The proposed framework can recognize unseen classes, subclasses and specific instances of objects without additional annotation effort.

Neural Algebra of Classifiers Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould

3 - PROBLEM FORMULATION

We propose an algebra of visual primitives:

- Visual primitives (p): known simple visual concepts, e.g., hooked beak (hb) and large wingspan (lw).
- Composition rules: (A, AND) conjunction, (V, OR) disjunction, and (\neg, NOT) negation.
- Expressions (e): visual concepts expressed as multiple compositions of primitives and composition rules, e.g., albatrosses = hb AND lw.

4 - LEARNING & INFERENCE

We propose to learn a parameterized function ($w_e = f_{\Theta}(e)$) that maps the space of expressions to the space of binary classifiers using a relative small subset of training expressions and relying on the classifier similarity to generalize for unknown expressions.

ARC CENTRE OF EXCELLENCE FOR ROBOTIC VISION

5 - COMPOSITION FUNCTIONS

We model the function $f_{\Theta}(e)$ as a set of composition functions by decomposing expressions in simple terms and evaluating them recursively.

$$g^{\wedge}(w_a, w_b) = \text{Neural Network}(w_a, w_b)$$
$$g^{\neg}(w) = -w$$
$$g^{\vee}(w_a, w_b) = g^{\neg}(g^{\wedge}(g^{\neg}(w_a), g^{\neg}(w_b)))$$

- These composition functions are autoregressive models.
- The negation is defined analytically.
- The disjunction is defined according to the **De** Morgan's Laws.
- The conjunction is a multilayer perceptron (MLP).

Australian National University

6 - RESULTS

Simple Binary Expressions:

Table 1. Evaluating known/unknown disjunctive and conjunctive expressions on the CUB-200 Birds dataset.

	Disjunctive Expressions					Conjunctive Expressions						
	Known Exp.			Unknown Exp.			Known Exp.			Unknown Exp.		
Metrics	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER
Chance	39.70	50.00	50.0	40.60	50.00	50.0	4.55	50.0	50.0	4.59	50.0	50.0
Supervised	65.25	74.76	31.58	-	-	-	22.87	78.02	29.69	-	-	-
Independent	58.73	68.39	36.76	60.66	69.28	36.10	17.23	77.22	29.94	19.16	78.00	29.28
Neural Alg. Classifiers	70.10	77.36	29.44	71.18	77.76	29.04	23.09	81.54	26.36	23.87	81.98	25.85

Table 2. Evaluating known/unknown disjunctive and conjunctive expressions on the AwA2 dataset.

	Disjunctive Expressions					Conjunctive Expressions						
	Known Exp.			Unknown Exp.			Known Exp.			Unknown Exp.		
Metrics	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER
Chance	53.19	50.0	50.0	53.04	50.0	50.0	18.77	50.0	50.0	21.17	50.0	50.0
Supervised	97.47	97.20	8.13	-	-	-	94.90	98.53	6.00	-	-	-
Independent	97.28	97.12	8.70	97.86	97.58	6.77	93.95	98.13	6.80	93.90	97.87	7.36
Neural Alg. Classifiers	98.84	98.67	5.84	99.05	98.91	5.24	95.95	98.79	5.29	96.50	98.81	5.34

Complex Unknown Expressions: $(p_1 v q_1) \Lambda$ $(p_2 V q_2) \Lambda \dots \Lambda (p_c V q_c)$

🔶 Chance

📥 Independent

🔶 Neural Alg. Cls

Qualitative Evaluation

 $= \sum_{i=1}^{FP:} FN:$ The second s FN: TN: $\overrightarrow{FP:}$ FN: TN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: FN: \overrightarrow{FP:} FN: FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: FN: \overrightarrow{FP:} FN: FN: FN: \overrightarrow{FP:} FN: FN: \overrightarrow{FP:} FN: FN: FN: \overrightarrow{FP:} FN: FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: $\overrightarrow{FP:}$ FN: \overrightarrow{FP:} FN: FN: FN: \overrightarrow{FP:} FN: FN: \overrightarrow{FP:} FN: FN:

www.roboticvision.org