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Abstract

The world is fundamentally compositional, so it is nat-
ural to think of visual recognition as the recognition of
basic visually primitives that are composed according to
well-defined rules. This strategy allows us to recognize un-
seen complex concepts from simple visual primitives. How-
ever, the current trend in visual recognition follows a data
greedy approach where huge amounts of data are required
to learn models for any desired visual concept. In this pa-
per, we build on the compositionality principle and develop
an “algebra” to compose classifiers for complex visual con-
cepts. To this end, we learn neural network modules to
perform boolean algebra operations on simple visual clas-
sifiers. Since these modules form a complete functional
set, a classifier for any complex visual concept defined as
a boolean expression of primitives can be obtained by re-
cursively applying the learned modules, even if we do not
have a single training sample. As our experiments show, us-
ing such a framework, we can compose classifiers for com-
plex visual concepts outperforming standard baselines on
two well-known visual recognition benchmarks. Finally, we
present a qualitative analysis of our method and its proper-
ties.

1. Introduction
Imagine a sea-faring bird with “hooked beak” and “large

wingspan”. Most people would be thinking of an albatross.
Moreover, given a set of images of birds, the descriptive
features “hooked beak” and “large wingspan” are key for
someone to identify images of albatross versus other birds
even if they had never seen an albatross before. These pro-
vide evidence that visual concepts are compositional and
complex visual concepts like albatross are defined as a com-
position of simpler visual concepts such as “hooked beak”
and “large wingspan”. In addition, humans have very for-
mal and structured ways of reasoning about compositions
such as propositional logic, predicate logic, and boolean
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Figure 1. Illustration of the proposed neural algebra of classifiers.
Given classifiers for primitive visual concepts such as hooked beak
and large wingspan, we can compose classifiers for complex con-
cepts such as gull and albatross that are represented by boolean
expressions of these primitives.

algebra. However, the current state-of-the-art models for
recognition follow a laborious data-driven approach, where
complex concepts are learned using thousands or millions
of manually labeled examples instead of using composition.
Such data greedy approach is infeasible for many real world
applications.

In this paper, we build on the insight that visual con-
cepts are fundamentally compositional and develop an alge-
bra for combining concept classifiers. Towards this end, we
propose a composition framework inspired by boolean al-
gebra structures such as disjunction, conjunction, and nega-
tion. More specifically, we develop neural network modules
which can learn to compose classifiers according these logi-
cal operators allowing us to produce classifiers for any com-
plex concept expressed as a boolean expression of primi-
tive concepts. For instance, our approach can compose a
classifier for albatross by combining classifiers for “large
wingspan AND hooked beak”. Likewise, gull’s classifier
can be expressed as “(NOT large wingspan) AND hooked
beak” (Figure 1). Moreover, such a framework can pre-
dict unseen complex visual concepts like humans do. For
example, it is possible to identify a car made of grass by



composing a classifier for “grass AND car”, even if such a
concept does not have training data. It also allows to rec-
ognize subclasses and specific instances of objects without
any additional annotation effort. Therefore, we can scale-up
recognition systems for complex and dynamic scenarios.

Learning how to compose classifiers for unseen com-
plex concepts from simple visual primitives by developing a
compositional algebra is a challenging task since there is no
trivial mapping between primitives and their compositions.
Naively, we can think of recognizing an albatross whenever
the classifiers for large wingspan and hooked beak fire si-
multaneously. However, such an approach assumes strong
independence between visual primitives and does not con-
sider the imperfection of the primitive classifiers or reason
about correlations and cooccurrences of visual primitives.
Furthermore, as observed by Misra et al. [19], the meaning
of a composition depends on the context and the particular
instance being composed. For instance, the visual appear-
ance of “old” for bikes is completely different for people.
In contrast, our approach is learned in the classifier space
exploring correlations, cooccurrences, and contextuality be-
tween visual primitives in order to compose more accurate
classifiers for complex visual concepts.

Our contributions are threefold. First, we propose a
learning framework for composition of classifiers. Such a
framework resembles an algebra in which we can synthe-
size classifiers for any visual concept described as boolean
expression of visual primitives. Second, we develop a neu-
ral network based model which minimizes the classification
error of a subset of visual compositions and generalizes for
unseen compositions. Third, we show how these modules
can be used recursively to produce classifiers for complex
concepts expressed as boolean expressions of visual primi-
tives.

We conduct several experiments to show the efficacy of
our approach. We show that our method is able to syn-
thesize classifiers according to simple composition rules by
learning how to compose concepts from a subset of prim-
itive compositions and generalizing for compositions not
seen during training. In addition, our approach naturally
extends to complex compositions by recursively applying
our learned neural network modules. On all of these set-
tings, our method outperforms standard baselines. Finally,
we evaluate qualitatively some interesting properties of our
method.

2. Related Work
The principle of compositionality says that the mean-

ing of a complex concept is determined by the meanings
of its constituent concepts and the rules used to combine
them [11, 3, 4]. For instance, written language is built of
symbols which form syllables, words, sentences, and texts.
Likewise, visual data can be decomposed into scene, ob-

jects, textures and pixels. The principle is pervasive in our
world and have been studied extensively by different scien-
tific communities ranging from mathematics to philosophy
of language. In this paper, we study compositionality in the
context of visual recognition.

Viewing objects as collections of known parts at famil-
iar relative locations may be the most common way to in-
corporate compositionality into visual recognition systems.
For instance, deformable parts model [9, 13], and-or graphs
[32, 26, 35, 29], dictionary learning [30, 36, 37], and self-
supervised representation learning [6, 25, 10] techniques are
built over this intuition. Likewise, scenes can be seen as
hierarchical compositions of concepts in different abstrac-
tion levels. Then, convolutional neural networks [34, 27]
and recurrent neural networks [15, 5, 28] can also be seen
as compositional models. Differently, we focus in compos-
ing classifiers for complex concepts that can be expressed
as boolean expression of primitive visual concepts. For in-
stance, our approach is able to classify a specific instance
given its visual attributes even if such an instance is not
present in the training set.

It is important to note that compositionality helps to re-
duce the complexity of some problems by decomposing
them in subproblems which allow more tractable solutions.
For instance, Andreas et al. [1] and Hu et al. [16] explore
the structure of natural language questions in order to de-
fine a set of simpler problems which can be solved by sim-
ple neural networks. Neelakantan et al. [21], proposed a
neural network to induce programs of simple operations to
answer questions which involve logic and arithmetic rea-
soning. Faktor and Irani [7, 8] use the “similarity by com-
position” framework [2] to perform clustering and object
co-segmentation. Likewise, we decompose the problem of
recognizing any specific instances of objects by the problem
of composing a classifier according to simple rules from its
individual visual primitives.

Closely related to our work, Misra et al. [19] show the
importance of context in composition of object and at-
tributes. More specifically, they argue that the visual inter-
pretation of attributes depends on the objects they are cou-
pled with. For instance, an old bike has different visual fea-
tures than an old computer. Building on this intuition, the
authors propose a transformation function to map from ob-
ject and attribute classifiers to the composition of classifiers.
Thus, their scheme can only synthesize classifiers for visual
concepts like “red wine”, “large tv”, and “small modern
cellphone”. In contrast, we develop a generic framework
to combine any number of concept classifiers according to
arbitrary boolean expressions. Such a framework provides
richer expressiveness since we are able to compose clas-
sifiers for more complex concepts like “red or blue socks
without holes”.

The problem of classifying unseen visual concepts is



also known as zero-shot classification [22, 17, 18, 12].
However, zero-shot classifiers are only able to recognize un-
seen object classes, while our proposed framework is also
able to recognize unseen groups, sub-groups, and specific
instances of objects. Furthermore, we do not make assump-
tions about the existence of an external source of knowl-
edge such as class-attributes relationship [17], text corpus
[18], or language models [12]. We explore composition-
ality in the visual domain and other visual priors, such as
co-occurrence and dependence of visual attributes.

3. Neural Algebra of Classifiers
In this section, we explain the proposed neural algebra of

classifiers. We start by formalizing the problem of classifier
composition in an algebraic perspective. Then, we describe
our learning algorithm, model architecture, and inference
pipeline.

3.1. Problem Formulation

Our problem consists of classifying images according to
complex visual concepts expressed as boolean algebra of a
set of primitives. Initially, let us assume we have a set of
known visual concepts, named primitives, like socks (S),
Red (R), Blue (B) and Holes (H). In addition, consider ba-
sic composition rules inspired by boolean operators: (∧)
that identifies whether two primitives are depicted in the im-
age simultaneously, (∨) which denotes if the image has at
least one of the primitives, and (¬) which accepts all im-
ages which a primitive is not depicted. Then, what is the
classifier for a complex visual concept expressed by multi-
ple compositions of primitives and these rules. For instance,
what is the classifier for “red or blue socks without holes”
described by the expression “S ∧ (B ∨ R) ∧ (¬ H)”.

Formally, let us define a set of primitives P = {pi}Mi=1.
We can express complex concepts by forming arbitrary ex-
pressions recursively combining primitives with composi-
tion rules O = {¬,∧,∨}. Note that this set of rules is a
complete functional set, i.e., any propositional expression
of primitives can be written in terms of these rules. Then,
our objective can be summarized as learning a parametrized
function, fθ (·) : E 7→ C that maps from the space of expres-
sions E to a space of binary classifiers C. In other words, we
want the function fθ (·) be able to synthesize a classifier for
any given expression.

Without loss of generality, we will explain the details
of our approach for the case of linear classifiers, but the
same formulation can be used to synthesize non-linear or
kernelized classifiers. Thus, we define fθ (·) as,

ŵe = fθ(e) (1)

where ŵe ∈ C is a linear classifier, i.e., separating hyper-
plane, that distinguishes positive and negative samples for
an expression and θ are the function parameters.

3.2. Learning

In order to efficiently learn the proposed mapping func-
tion, we need to represent the visual content of images and
the semantic meaning of primitives in a compact way. To-
wards this end, we define hφ ∈ RD as a parametrized fea-
ture extractor which computes a vector representation that
summarizes all visual features of a given image and φ is
the set of parameters. Likewise, we represent all primitives
by classifiers trained to recognize images that depict them.
Since we focus on linear classifiers in this paper, we repre-
sent every primitive p by the separating hyperplane parame-
terswp ∈ RD, e.g., obtained by training an one-vs-all linear
SVM classifier on the feature representation of images.

Note that boolean expressions are evaluated by decom-
posing them into a sequence of simpler terms and eval-
uating these terms recursively. For instance, the expres-
sion S ∧ (B ∨ R) ∧ (¬H) can be evaluated by recursively
evaluating the sequence of simpler expressions (B ∨ R),
S ∧ (B ∨ R), ¬H , ((S ∧ (B ∨ R)) ∧ (¬H)). Such a
decomposition can be computed efficiently by representing
expressions as binary trees and parsing their nodes in post-
order. Then, we propose to model the function fθ (·) as a
set of composition functions g∧ (·), g∨ (·), g¬ (·). In other
words, the function fθ (·) is computed by decomposing an
expression in simple terms and applying the composition
functions accordingly.

These composition functions g∗ : C × C 7→ C are auto-
regressive models which maps from and to the classifier
space. For instance, the conjunctive composition function
g∧ (·), given two concepts as input like “Socks” and “Red”
represented in the classifier space by ws, wr ∈ RD, should
compute the classifier ws ∧ r ∈ RD that recognizes when
both concepts are present in a image simultaneously. Sim-
ilarly, the functions g∨ (·) and g¬ (·) should compute the
disjunction and negation in classifier space, respectively.

We also observe that some of these composition func-
tions can be defined analytically or in terms of other compo-
sition functions. More specifically, the negation consists of
just inverting the separating hyperplane and the disjunction
can be derived using De Morgan’s laws. Then, we propose
to implement these functions as

g∧θ (wa, wb) = Neural Network(wa, wb)

g¬(w) = −w
g∨ (wa, wb) = g¬ (g∧ (g¬ (wa) , g¬ (wb))) ,

(2)

where the conjunctive composition g∧θ (·) is a neural net-
work learned from data and θ are the learnable parameters.1

Therefore, the learning of function fθ (·) is decomposed on
the learning of these composition functions.

1Equivalently, we could have defined g∨ by the neural network and g∧

using De Morgan’s laws.
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Figure 2. Neural algebra of classifiers: Our method composes classifiers for complex visual concepts expressed as boolean expressions of
primitive concepts. We first represent every primitive by a classifier and every image by a feature vector. Then, we use a subset of training
expressions to learn a set of composition functions which generalizes to concepts represented by unseen expressions or even unseen
primitives. In order to make such learning problem easier, we explore geometry and boolean algebra fundamentals such as hyperplanes
and De Morgan’s laws.

Following these ideas, let us define a subset of training
expressions {ek}Kj=1 ⊂ E composed by composition rules
O and primitivesP . Note that such a subset is much smaller
than all possible expressions that can be formed by com-
posing these primitives. Likewise, we define a set of train-
ing images {(xi, yi) | xi ∈ I, yi ∈ {0, 1}K}Ni=1 with the
ground-truth label yij denoting whether the image xi is a
positive example for the expression ej . Then, learning the
function fθ (·) can be defined as,

minimize
θ,φ

1

KN

K∑
j=1

N∑
i=1

α1∆
(
fθ(ej)

Thφ (xi) , yij
)

+
α2

2
‖fθ(ej)‖22 + α3R(θ), (3)

where ∆(·, ·) is a classification loss function, R (·) is some
regularization function and {θ, φ} is the set of learnable pa-
rameters. We also have the hyper-parameters α ∈ R3 which
controls how our model correctly fit the training data (α1),
regularizes for training expressions (α2), and for unknown
expressions (α3). The idea is to learn how to synthesize
classifiers that correctly classify images according to the in-
put expressions even if the expressions had not been seen
during training.

It is important to note that such a formulation aims to
explore semantic similarity on classifiers space and the vi-
sual compositionality principle in order to make our learn-
ing problem easier to solve. We use a relative small subset
of expressions to learn our proposed mapping function and
rely on the classifier similarity to generalize for unknown
expressions. Likewise, we explore visual compositionality
by decomposing training expressions in simpler expressions
and jointly learning the composition functions.

3.3. Inference

As alluded to above, our main goal is to produce classi-
fiers for boolean expressions of primitives. These expres-
sions can be represented by a tree where composition rules
are nodes and primitives are leaves. Thus, our inference
consists of parsing the expression tree in post-order and ap-
plying the composition functions accordingly in order to
end up with the final classifier just after parsing the root.

Then, we can compute the classifier score for an image
given an expression by:

s = fθ(e)
Thφ(x) (4)

This score reflects the compatibility between the expression
and the image. We want this score to be high only if the im-
age contains the complex concept described by the expres-
sion e and low otherwise. As an example, for the expression
“S ∧ (B ∨ R) ∧ ¬H” we want the score s to be high only
for images containing blue or red socks without holes and
want it to be low for images containing any other concept.

3.4. Model and Implementation Details

We propose to implement the conjunctive composition
function g∧θ (·) and the feature extractor hφ (·) as a mul-
tilayer perceptron (MLP) [14] network and VGG-16 con-
volutional neural network [27] respectively. We represent
images with 4096-dimensional feature vectors computed
by the FC6-layer of VGG-16 network pretrained on Ima-
geNet [24]. Consequently, the primitives are represented
by 4097-dimensional vector obtained from training linear
SVMs on these features. Since the bias can be implemented
by adding a +1 fixed feature to image representation vec-
tors, g∧θ (·) is a MLP network that have (2 × 4097) inputs
and two fully connected layers with outputs of size (1.5 ×



4097) and (4097), respectively. We use the LeakyReLU
non-linearity, with slope set to 0.1, in between the layers
and linear activation on the outputs. Figure 2 shows our
neural network architecture in details.

During training, we approximate the objective Equa-
tion 3 by batches of 32 expressions, 5 positive and 5 nega-
tive images for each expression sampled uniformly. We first
train our neural algebra of classifiers module alone during
50 epochs, then we finetune the features jointly during 10
epochs more. Since the primitives are represented by linear
SVM classifiers, we decide to use the hinge loss,

∆ (sij , yij) = max(1− yijsij)

where sij is the score assigned to the image xi by the clas-
sifier predicted for the expression ej . In addition, we use
the standard `2 regularization in the network weights as our
regularization function R (·).

4. Experiments
We now evaluate the performance of our method and

compare against several baselines. We first describe the
experimental setup, datasets, metrics, and baselines used
in our experiments. Then, we analyze how effectively our
model can compose classifiers for simple and arbitrary com-
positions of concepts in addition to presenting a qualitative
evaluation of our method.

4.1. Experimental Setup

We are interested in the task of predicting whether a
given image contains the complex concept described by a
boolean expression of primitives which may not have any
training data. Towards this end, we first define two dis-
joint sets of boolean expressions of primitives named “train-
ing expressions” and “test expressions” and three disjoint
sets of images named “training images”, “validation im-
ages” and “test images”. Second, we learn the primitive
representation, train our model and baselines using train-
ing images and training expressions. Then, we evaluate the
performance of our method and baselines classifying im-
ages on the validation set according to training expressions,
named “known expressions performance”, and classifying
images on the test set according to test expressions, named
“unknown expressions performance”. The former suggests
how well a model learns to compose classifiers and the lat-
ter how well a model generalizes for expressions not seen
in training.

Datasets. We use the CUB-200 Birds (CUB-200) [31]
and Animal With Attributes 2 (AwA2) [33] datasets in our
experiments. Since none of these datasets were designed
for our purpose, we split these datasets in order to perform
controlled experiments. First, we compute all possible bi-
nary conjunctive and disjunctive expressions of primitives

and filter out the ones that do not have reasonable amount
of positive and negative images. Then, we randomly split
the images between train, validation, and test images mak-
ing sure that every expression and primitive have reason-
able amounts of positive and negative samples in each im-
age split. As a result, we create approximately 3k training
expressions and 1k test expressions using 250 primitives for
the CUB-200 dataset, while we create approximately 1.5k
training and 600 test expressions using 80 primitives for the
AwA2 dataset. In order to make easier to reproduce our re-
sults, the experiment code and these data splits are available
in the first author’s homepage.

Metrics. A boolean expression of primitives defines a
binary classification problem where images are classified
as relevant or irrelevant for the visual concept described.
Therefore, we use well-known evaluation metrics of im-
age retrieval and binary classification. More specifically,
we use the mean average precision (MAP), area under the
ROC curve (AUC) and equal error rate (EER). We compute
these metrics globally in order to take the data imbalance
in account since some expressions are naturally rarer than
others.

Baselines. We compare our method to several baselines
in order to evaluate empirically how well we can compose
classifiers for complex concepts:

• Chance: This is an empirical lower bound for the prob-
lem and consists of assigning random scores for image
and expression pairs.

• Supervised: This is an empirical upper bound for the
problem and consists of training SVMs for every train-
ing expression. Thus, it is a fully supervised approach
which can not be extended for unknown expressions.
Therefore, we just report its performance for known
expressions.

• Independent Classifiers: This baseline assumes that vi-
sual concepts are independent events and uses basic
probability rules to estimate the probability of a com-
plex concept being depicted in an image. They are de-
fined according to the following rules,

p(v1 ∧ v2) = p(v1)p(v2)

p(v1 ∨ v2) = p(v1) + p(v2)− p(v1)p(v2)

p(¬ v) = 1− p(v)

(5)

where p(v) is the probability of a given image has
the primitive v estimated by the classifier wv . Note
that in order to estimate these probabilities we cali-
brate the learned SVMs using a small held-out subset
of the training images (≈ 10%) and Platt’s calibration
method [23].



Table 1. Evaluating known/unknown disjunctive and conjunctive expressions on the CUB-200 Birds dataset.
Disjunctive Expressions Conjunctive Expressions

Known Exp. Unknown Exp. Known Exp. Unknown Exp.
Metrics MAP AUC EER MAP AUC EER MAP AUC EER MAP AUC EER
Chance 39.70 50.00 50.0 40.60 50.00 50.0 4.55 50.0 50.0 4.59 50.0 50.0
Supervised 65.25 74.76 31.58 - - - 22.87 78.02 29.69 - - -
Independent 58.73 68.39 36.76 60.66 69.28 36.10 17.23 77.22 29.94 19.16 78.00 29.28
Neural Alg. Classifiers 70.10 77.36 29.44 71.18 77.76 29.04 23.09 81.54 26.36 23.87 81.98 25.85

Table 2. Evaluating known/unknown disjunctive and conjunctive expressions on the AwA2 dataset.
Disjunctive Expressions Conjunctive Expressions

Known Exp. Unknown Exp. Known Exp. Unknown Exp.
Metrics MAP AUC EER MAP AUC EER MAP AUC EER MAP AUC EER
Chance 53.19 50.0 50.0 53.04 50.0 50.0 18.77 50.0 50.0 21.17 50.0 50.0
Supervised 97.47 97.20 8.13 - - - 94.90 98.53 6.00 - - -
Independent 97.28 97.12 8.70 97.86 97.58 6.77 93.95 98.13 6.80 93.90 97.87 7.36
Neural Alg. Classifiers 98.84 98.67 5.84 99.05 98.91 5.24 95.95 98.79 5.29 96.50 98.81 5.34

4.2. Simple Binary Expressions

In this experiment, we focus on evaluate how well our
model can learn to compose classifiers for simple binary
conjunctive and disjunctive expressions. We follow the pro-
cedure explained in Section 4.1 and evaluate our model and
baselines on both cases separately. We do not report the
result with simple negative expressions since it is a trivial
mapping in classifier space as explained in Section 3.

We present the results for our methods and baselines on
the CUB-200 and AwA2 datasets in Table 1 and Table 2
respectively. As expected, the supervised method presents
good performance on both types of expressions but it is lim-
ited to expressions known at training phase. Thus, it can not
be used in large scale recognition problems where the num-
ber of complex concepts that can be composed is very large.

On the other hand, the independent approach seems to
be a strong baseline. It produces slightly worse results than
the supervised approach for known expression, mainly on
conjunctive expressions, while can classify images accord-
ing to unknown expressions. However, we note that such
a performance is due to the high accuracy of the primitive
classifiers, it can reach the AUC of≈ 85% for the CUB-200
and ≈ 95% for the AwA2 when classifying validation and
test images according to primitive concepts. Then, its per-
formance should decrease drastically in more challenging
datasets.

However, our method shows significant superior perfor-
mance on every setting on both datasets. For instance, the
proposed method reaches improvements around 10% for
disjunctive expressions and 5% for conjunctive expressions
in the CUB-200 dataset. In fact, it is able to surpass the
supervised methods on known expression since it allows to
learn specific features for complex compositions in addi-
tion to reason about correlations between primitives. It is
also important to mention that our hypothesis of implement-

ing the disjunctive composition function as the combination
of the negation and conjunction according to the De Mor-
gan’s laws is verified, since we reach similar performance,
when we train a specific MLP network for disjunctive ex-
pressions.

Despite the differences highlighted in Section 2, we ac-
knowledge the similarity between the transformation func-
tion proposed by Misra et al. [19] and our AND composi-
tion function. More specifically, we both learn an MLP, but
we use different network architectures and optimize differ-
ent objectives. Then, we evaluate their model in our sim-
ple binary conjunctive expression experiment. Despite their
model having approx. 2.7x more learnable parameters, it
performs slightly worse than our AND composition (around
1% in all metrics used) which demonstrates the efficiency of
our architecture and loss function.

4.3. Complex Expressions

From previous experiments, we can conclude that our
model is able to learn composition rules for simple binary
expressions. However, we still need to show that these
models are suitable for arbitrary expressions. According to
boolean algebra, every boolean expression can be written in
generic forms such as Normal Disjunctive From (NDF) and
Normal Conjunctive form (NCF). The former consists of an
OR of ANDs, e.g., (p1 ∧ q1) ∨ (p2 ∧ q2) ∨ . . . ∨ (pc ∧ qc),
and the latter consists of an AND of ORs, e.g., (p1 ∨ q1) ∧
(p2 ∨ q2) ∧ . . . ∧ (pc ∨ qc) where p and q are visual primi-
tives which may appear negated and c is the number of sim-
ple terms in those expressions. From the visual recognition
perspective, c can be seen as an indicator of the complex-
ity of an expression since long expressions usually defines
more specific visual concepts than short expressions. For
instance, (Blue∨Red)∧Socks∧ (¬Holes) is a more spe-
cific visual concept than any of its subexpressions such as
((Blue ∨Red) ∧ Socks) and (Socks ∧ (¬Holes)).
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Figure 3. Performance of the proposed method and baselines on classifying images according to unknown expressions of different com-
plexity described in conjunctive normal form (CNF). The first row presents the results for CUB-200 dataset, while the second row presents
the results for AwA2 dataset. In the first column the performance in measured in terms of mean average precision (higher is better), while
the second column reports the area under the ROC curve (higher is better), and the third column reports the equal error rate (lower is better).

Since it is straight forward to convert any expression for
both normal forms [20], we decide to examine the perfor-
mance of our method and baselines on complex expressions
in the normal conjunctive form. Towards this end, we ran-
domly generate 1k test CNF expressions of complexity 2,
4, 6, 8, 10 from simple unknown disjunctive expressions.
In order to avoid normalization issues when combining lin-
ear classifiers produced by our method and the primitives
classifiers, we finetune our method using training images
and CNF expressions of complexity 4 formed from known
simple disjunctive expressions. Then, we use our method
and baselines to classify test images according to the sam-
pled CNF expressions of different complexities. Again, the
finetune and test expression sets are disjoint as well as the
training and test image sets. We also do not evaluate the su-
pervised baseline because we do not have training images
for the test expressions.

In Figure 3, we plot baselines and our method perfor-
mance in terms of mean average precision, area under the
ROC curve and equal error rate on CNF expressions of dif-
ferent complexities composed by unknown simple binary
expressions. As expected, the performance of all evaluated
methods decrease as we increase the complexity of the test
expressions. This is more noticeable in our method which
stabilizes for complexity greater or equal to 6. However, we
consistently outperform the baselines on classifying images
according to expressions of different complexities in both
datasets.

4.4. Qualitative Evaluation

We now evaluate the proposed method qualitatively by
visualizing the classification results of some interesting ex-
pressions. More specifically, we classify the test images by
scoring them according to manually picked unknown ex-
pressions and thresholding using the equal error rate thresh-
old. In Figure 4, we show some randomly selected true pos-
itives (TP), false positives (FP), false negatives (FN) and
true negatives (TN) for every selected expression.

Looking back to our motivational example and analyzing
the ground truth of CUB-200 dataset, we can state that al-
batrosses and gulls are birds with hooked beak (HB), black
eyes (BE), solid wings pattern (WPS) which do not have
black upper tail (UTB) or gray wings (WG). We examine
such a statement in the first row of Figure 4 by analyzing the
classification results produced by our method for the respec-
tive boolean expression of these primitives. We note that
most of the positive predictions are from different species
of albatrosses and gulls. Furthermore, long wings (LW) is
a good visual feature to discriminate albatrosses from gulls.
Then, we add such a term in the boolean expression and
note the predominance of gulls in the predicted positive ex-
amples in the second row of Figure 4. This example shows
qualitatively that our approach is able to group and discrim-
inate objects according to different visual features.

In addition, we can also use our method to find specific
combinations of visual features. For instance, consider the
following visual features: blue breast (BB), red breast (RB),



HBS AND BE AND WPS AND (NOT (UTB OR WG))
TP: FP: FN: TN:

HB AND BE AND WPS AND (NOT (UTB OR WCG)) AND (NOT LW)
TP: FP: FN: TN:

B AND F AND (NOT H)
TP: FP: FN: TN:

(NOT (S OR SL )) AND (NOT H)
TP: FP: FN: TN:

(RB AND RC) OR (BB AND BC) OR (YB AND YC)
TP: FP: FN: TN:

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)
TP: FP: FN: TN:

Figure 4. Randomly selected true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN) test images classified
according to manually selected unknown expressions of the following visual primitives: hooked beak (HB), black eyes (BE), solid wings
pattern (WPS), long wings (LW), blue breast (BB), red breast (RB), yellow breast (YB), blue crown (BC), red crown (RC), yellow crown
(YC), big (B), fast (F), hunter (H), small (S) and slow (SL).

yellow breast (YB), blue crown (BC), red crown (RC) and
yellow crown (YC). In the third row of Figure 4, we are
looking for birds that have the breast and crown of the same
color which could be blue, red or yellow. While in the
fourth row of Figure 4, we aim for a more specific combina-
tions of these visual primitives like birds that have different
breast and crown color. We can note that the predicted pos-
itives are predominately unicolor in the former expression,
while they are more colorful in the latter one. Furthermore,
the false positives usually present part of the desired compo-
sition of visual primitives which is perhaps a consequence
of the compositional principle.

From the perspective of boolean algebra, two equivalent
expressions must have the same truth table. Translating to
our context, we can say that two equivalent composition of
primitives should have similar classification results. In or-
der to demonstrate such a property, we express the set of big
(B) and fast (F) animals that are not hunter (H) in two dif-
ferent ways using De Morgan’s Laws: (B AND F) AND
(NOT H) and (NOT (S OR SL)) AND (NOT H) where
small (S) and slow (SL) are the opposite concepts of fast
and big respectively. As we can see in the last two rows
of Figure 4, the positive and negative predictions have basi-
cally instances from the same classes such as gorillas, deers,

horses and dolphins for the positives while elephants, tigers
and lions for the negatives. Therefore, our proposed method
spans an algebra of visual primitives where complex visual
concepts can be described by different compositions.

5. Conclusion

In this paper, we tackled the problem of learning to syn-
thesize classifiers for complex visual concepts expressed in
terms of visual primitives. We formulated such a prob-
lem as an algebra of classifiers where the composition rules
are learned from data and complex visual concepts are ex-
pressed by boolean expressions of primitives. Through a
variety of experiments, we show that our framework can
synthesize accurate classifiers for known expressions, and
generalize to arbitrary unknown expressions. It consis-
tently outperforms the baselines across different metrics and
datasets. Besides, we demonstrate qualitatively different
queries that can be answered by our model.
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