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Abstract. In this paper, we propose a framework for synthesising 3D
brain T1-weighted (T1-w) MRI images from Partial Volume (PV) maps
for the purpose of generating synthetic MRI volumes with more accu-
rate tissue borders. Synthetic MRIs are required to enlarge and enrich
very limited data sets available for training of brain segmentation and
related models. In comparison to current state-of-the-art methods, our
framework exploits PV-map properties in order to guide a Generative
Adversarial Network (GAN) towards the generation of more accurate
and realistic synthetic MRI volumes. We demonstrate that condition-
ing a GAN on PV-maps instead of Binary-maps results in 58.96% more
accurate tissue borders in synthetic MRIs. Furthermore, our results in-
dicate an improvement in the representation of the Deep Gray Matter
region in synthetic MRI volumes. Finally, we show that fine changes
introduced into PV-maps are reflected in the synthetic images, while
preserving accurate tissue borders, thus enabling better control during
the data synthesis of novel synthetic MRI volumes.

Keywords: Generative Adversarial Network - Partial Volume Maps -
Synthetic MRIs - 3D Image Synthesis.

1 Introduction

Deep Neural Networks, particularly Convolutional Neural Networks (CNNs),
have demonstrated tremendous capability to perform accurate segmentation
tasks when trained on large datasets [I9J20]. In medical imaging, these meth-
ods are limited by the scarcity of available data. Labelling medical data is time
consuming and requires a high level of expertise which is expensive. Many dif-
ferent CNN-based methods attempted to overcome this hurdle by mitigating
the amount of data needed for their training, such as using unsupervised [3/T5],
weakly-supervised [8127], semi-supervised [2/T7] and self-supervised [14|2T] meth-
ods. The drawback of these methods is that they are typically less accurate than
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supervised methods [I3]. Furthermore, since the ground truth label is missing,
it is more difficult to evaluate the performance of these methods [12].

In contrast to aforementioned methods, data augmentation methods [B22/23]
aim to increase the number of available labelled samples needed for training of
supervised methods. Data augmentation methods fall into two major trends: ge-
ometric transformation-based and GAN-based. Most geometric transformation-
based augmentation methods provide limited improvement in terms of samples
variety as their output highly relies on the input data.

A GAN is a data synthesis approach capable of injecting more variety into
synthesised data and generating outputs less dependant of the input data, while
aiming to follow the training data distribution [6]. MRI synthesis using GANs
can be classified into two prominent approaches: unconditional [6I7/TT] and con-
ditional [T6l22]. The main drawback of unconditional MRI synthesis approaches,
in the context of supervised segmentation, is the missing segmentation labels of
the newly synthesised MRIs. Another drawback of such approaches is the lack
of synthesis control [I6]. On the other hand, MRI synthesis approaches based
on conditioning a GAN with segmentation labels, as presented in [22], keeps
the brain anatomical structures intact, while segmentation labels give the abil-
ity to control the synthetic results. Nevertheless, the segmentation labels only
provide an estimate of brain tissue types. Their accuracy is limited by the image
resolution and consequently the segmentation accuracy may suffer from partial
volume (PV) effects at the border between two tissues where a single voxel may
contain multiple classes. More accurate segmentation can be represented with
PV-maps as they define accurate border between two tissue classes [4], which
makes them a suitable choice for conditioning GANs in the context of MRI syn-
thesis. Conditioning GANs on PV-maps opens a pathway to generate MRIs of
different appearances while retaining the same anatomical structure with fine
boundary details. Having control over MRI synthesis by defining tissues with
PV-maps as well as the ability to change them may be used as a powerful data
synthesis approach.

In this paper, we propose a framework for synthesising 3D brain T1-weighted
MRI images from PV-maps. Our proposed framework is inspired by well-known
Image-to-Image conditional GAN approach described in [9]. We use PV-maps
of Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF)
as inputs to assist the training of the model and the generation of realistic
3D brain MRIs. We report the first attempt to synthesise realistic 3D brain
MRI images from PV-maps using GANs. Furthermore, we demonstrate that
changes in PV-maps reflect changes in newly generated synthetic images and
show how the framework can increase the number of synthetic training images.
The contributions of this paper are the following:

1) We proposed a GAN-based framework that exploits PV-map properties to ob-
tain synthetic MRI volumes with accurate borders between tissue classes as well
as more accurate and realistic Deep Gray Matter (DGM) regions.

2) In the context of 8D T1-w brain MRI generation using GANs, we demon-
strated that conditioning GANs on PV-maps produces better results than binary-
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Fig. 1. Schematic representation of the experimental method.

maps. The difference is most evident in the regions of tissue borders, which is
an important feature for applications such as cortical thickness estimation and
segmentation.

2 Methods

Hypothesis Formulation. When it comes to T1-w brain MRI synthesis, a
desirable synthetic MRI image (slpgrr) is expected to respect relations be-
tween brain anatomical structures of the original MRI images (Ipsgry). A possible
method to generate such images is to condition a GAN on a particular class label
to obtain results that meet the imposed condition [I6]. The same mechanism may
be applied to the problem of generating sly;r; that keeps the brain anatomy
intact. One of the simple ways is to condition a GAN for the purpose of sl rs
generation with intact anatomy is to use Binary Maps (M,) of different tissues. A
My, in the context of 3D images, is a volume M;, € {0, 1}%*"*4 where the value
of each voxel denotes affiliation to a single class (1 indicates class affiliation). In
the case of brain synthesis, a GAN can be conditioned on three classes: WM, GM
and CSF; where each class is represented as a Mj. The limitation of such a class
labelling method is the indivisible nature of voxel affiliation. In certain regions
of an MRI, especially in the region around a tissue border, the voxel may not be
of an adequate size. This limitation can be overcome by using PV-maps (M)
which, in the context of 3D images, is defined as a volume M, € [0, 1]w*"*4,
where the value of each voxel represents the proportion of affiliation to a single
class (1 indicates 100% class affiliation). The main advantage of My, is the abil-
ity to represent partial affiliation to a certain class, which allows tissue labelling
with higher precision when compared to single-class voxels.

We hypothesise that conditioning a GAN with M, instead of M, results
with better sl ry, especially at tissue interfaces. The hypothesis was evaluated
by the experimental method presented in Fig. [I} The Fig. [l shows the genera-
tion of M, from Insr; by performing brain segmentation, implemented with the
Expectation-maximisation (EM) algorithm [25], followed by PV-estimation im-
plemented as in [1]. Three My,s are derived from Iysgrr, one for each tissue-type
(WM, GM and CSF). We binarise Mp,s by assigning each voxel to the M, with
the highest partial affiliation for a particular voxel and obtain the correspond-
ing M, for each class. Two models were trained, GANp, on M,, and GAN, on
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M, and used to generate synthetic images, sl ]\ij}g  and sI{; respectively. Once
the sly;rr were synthesised, the reverse process was performed, where slj%;jl
and sIY,; were segmented followed by PV-estimation in order to obtain the

synthetic My, (sMpy). sMp, derived from sIAC}'}’RI are denoted as sMpCf)b, while

sMp, derived from sIAngI are denoted as sMpCf}’”. We generated sM,, in order
to evaluate to what extent are the imposed conditions preserved in sly/g;.
Model Architecture. The architecture of our model was inspired by Pix2Pix [9]
and adapted to facilitate the needs of 3D MRI images. Pix2Pix is a conditional
GAN capable of translating labels into images that follow a certain distribu-
tion, which makes it suitable for many image-to-image translation problems.
The network is composed of a U-net-based generator [18] and a PatchGAN-
based discriminator that compares image patches instead of whole images [9].
The modified architecture and its hyper-parameters are presented in Fig.

We denote data of a certain distribution d, with x, generator with G, its
output G(c1_3, 2) and discriminator with D. Moreover, we denote three condi-
tion variables with ¢i_3(M; or My, for three tissue-types) and a noise variable
with z. The objective function is defined as follows,

méanax]ECkS,x [log (D (cl,g,x))} +E; .- [log (1 - D (01,3, G (c1-3, z)))}

By [l = G (s A
1)

where G has a goal to minimise the probability of D performing a correct binary
classification task, while D aims to maximise the same. Referring to [9], we also
added the L1 distance clause to the objective function as L1 tends to mitigate
blurriness in the resulting images, which is needed for generation of images with
accurate tissue borders. We also used the noise z in the form of dropout (acti-
vated at training and inference) across a number of layers instead of providing
it as an input.

Data. For the evaluation of our training method we used a subset of 3T scans
(181x218x181 voxels) from the ADNI [10/26]] dataset. The subset contained 700
baseline subjects where only 3D T1-w volumes were used. Subjects were split into
train and test sets. The train set included 500 subjects, while the 200 remaining
subjects were used for the test set. All volumes were pre-processed by applying:
(i) bias field correction in the brain region [24], (ii) rigid registration to the MNI-

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner,MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other bi-
ological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-info.org.
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Fig. 2. Model architecture with supplementary hyper-parameter details.

- 3D Transposed Convolution (kernel size = 3, stride = 2, padding = 1)

- 3D Convolution (kernel size = 5, stride = 2, padding = 0)

space and (iii) zero-mean normalisation with the mean value computed from the
voxels in brain region of interest (ROI) only.

Training. We trained our models for 200 epochs. For the training of both models
we used Adam optimiser, batch size of 1 and initial learning rate of 0.0002. After
100 epochs, we reduced the learning rate by 2 x 10~ every epoch.

Fig. 3. Qualitative results of our framework trained on M,,. Presented results show
that changes introduced in the M, are reflected in the slprr. The ground truth
(a,f), two sets of Mp, from the same subject as well as corresponding sInarrr (e,j) are
presented respectively, where the region of DGM in the first case (b,c,d) is weakly
defined, in comparison to the second case (g,h,i).
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Table 1. Metrics computed between Iy rr and sIarr created by GANy and GANy,.

PSNR MAE MSE SSIM
GAN, | 32.777£1.041 | 0.166 4 0.024 | 0.054 £ 0.014 |0.955 £ 0.01
GAN,,[33.449 +£1.103|0.144 + 0.023|0.047 + 0.013|0.96 + 0.01

3 Experiments

Our experiments were constructed to asses the benefit of using My, over M,
for the purpose of synthesising T1-w brain MRI volumes with accurate tissue-
borders. Moreover, as a proof of concept for MRI synthesis, we assessed the
reflection of fine changes, introduced on the M,,, in slyrr and sMp,. In the
following experiments we evaluated the quality of sIpsr; and sMp, on the level
of the brain volume, three tissue ROIs, tissue borders and the region of DGM.
Image Synthesis Quality. We evaluated our models by generating slpy/gs
from both, M, and M,,, and comparing them with the corresponding Iy/r;.
Images were compared by employing the following metrics: Peak Signal-to-Noise
Ratio (PSNR), Mean Absolute Error (MAE), Mean Squared Error (MSE) and
Structural Similarity (SSIM) (see quantitative results in Table [I). PSNR, MSE
and MAE were computed in the brain ROI. The dynamic range measured in the
brain ROI of Iy; gy spans between [-0.56, 9.88], and was used to compute PSNR.
SSIM was calculated on the whole volume, with background values set to zero
as our generator generates brain sly;ry without a background. Table (1| shows
that GAN,, produced sI;;r; more similar to Ip;rr than GANy.

Evaluation at tissue level. We took a closer look and evaluated the quality of
sy rr as well as the corresponding sM,, in the ROI for every tissue-class (WM,
GM and CSF). The GAN, segmentation and PV estimation may introduce errors
in either sy gy or sM,,. Therefore, we computed MAE and MSE between Iy/r;
and sljspy in order to evaluate the error introduced by GAN. We also used the
Dice similarity metric (DSM) to evaluate the overlap with the ground truth
and MAE as well as MSE to evaluate the error in sM,, introduced by GAN,
segmentation and PV estimation. Quantitative results of the error metrics for
each tissue type, calculated on sl;ry, are presented in Table [2| Quantitative
measurements of shape and intensity error for each tissue-type computed on
sMp, are presented in Table [3l We concluded that less error was introduced
in case of GANp,, for all three tissues. Further, sM,, are more similar to the
ground truth in case of GAN,, where smaller shape and intensity errors were
introduced. According to Table[3] CSF has a lower DSM than WM and GM for
both GANs.The rational behind it is the nature of T1-w images where CSF is
difficult to distinguish from the other non-brain tissues.

Evaluation of multi-class voxels. In this experiment, we quantitatively eval-
uated multi-class voxels, their position and intensity values. Quantitative evalu-
ation was performed by computing DSM between M,,, and sM,, for evaluation
of their position in sly;grr, while MAE and MSE were computed to measure the
intensity error between Iy r; and slp;pr. DSM measured in slpy r; generated
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from both GANSs equals the value of one, which implies the location of multi-
class voxels is fully preserved in sMy, for both GANs. We measured MAE of
0.134 £0.017 and MSE of 0.03 £ 0.008 in the multi-class voxels of sI%, ;. In the
case of sIf/p;, we measured MAE of 0.079 £ 0.024 and MSE of 0.01 + 0.007.
We also overlaid Iy rr with absolute errors, computed voxel-wise, between M),
and sMy,, to provide more information about the localisation and severity of the
errors introduced by a GAN, segmentation and PV estimation (see Fig. . We
found that most of the errors happen at tissue boundaries and observed errors
of higher value in case of GAN,. This result illustrates the benefit of using M,
over M, for the purpose of preserving well defined tissue borders in slpg;-
According to the presented quantitative results, we obtained 58.96% smaller
MAE and 33.33% smaller MSE in multi-class voxels of sI}/,; comparing to
sI%, ;- The presented results support the illustration of absolute errors and
strongly suggest that tissue-borders are preserved with higher accurately in
slyrr generated by GAN,, opposed to GANy.
Evaluation of Deep Gray Matter. The region of DGM contains voxels that
belong to WM, GM or to both classes. The border between WM and DGM
is vaguely defined and hard to segment. Furthermore, in the context of MRI
synthesis, a loosely defined or flawed border between WM and DGM makes it
easy to distinguish between Ip;r; and sly rr. We evaluated the performance
of both models in the region of DGM. Quantitative analysis was performed on
sIyrr by computing MAE and MSE to measure the error injected by a GAN. In
the DGM region of sI%, p; we measured MAE of 0.12940.021 and MSE of 0.029+
0.01. Yet, in the same ROI of sI}/,; we measured MAE of 0.108 + 0.024 and

Table 2. Tissue-wise validation of s/ rr. MAE and MSE are computed between Inrr
and slpyrr inside each tissue class.

MAE MSE
WM GM CSF WM GM CSF
GANy | 0.0340.003 | 0.056 & 0.005 | 0.046 4 0.007 | 0.009 & 0.001 | 0.016 + 0.002 | 0.028 + 0.007
GAN,,|0.014 £ 0.003|0.027 £ 0.004(0.032 + 0.007|0.003 + 0.001|0.006 + 0.001|0.022 + 0.007

Fig. 4. Location and severity of errors injected into M,, by GAN, segmentation and
PV estimation. Absolute errors between M,, and sMg, as well as My, and sMS5P" are
shown in (a) and (b), respectively.
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Table 3. Tissue-wise shape validation of sIy/r;r and measurements of errors injected
into sIprr by a GAN segmentation and PV estimation.

DSM MAE MSE
WM | GM | CSF WM GM CSF WM GM CSF
GAN, 0.959(0.947]0.922| 0.067 £ 0.007 | 0.098 £ 0.007 | 0.114 4 0.018 | 0.019 4 0.003 | 0.028 £ 0.003 | 0.07 +0.018
GAN,,|0.985|0.981|0.954/0.035 4 0.007|0.047 4 0.008|0.082 + 0.017|0.007 £ 0.002|0.009 + 0.002|0.058 + 0.017

Fig. 5. Introducing fine changes. We introduced a small change into M, (b) derived
from Insrr (a) which is shown in (e). We generated slyrr from the original and
modified M,, shown in (¢) and (f). The M, were then derived from slpgrs in order
to verify if the introduced changes are preserved in sIarr, shown in (d,g).

MSE of 0.022 £+ 0.008. This indicates that the DGM region is more accurately
represented in sy r; generated by the GAN,, when compared to GANp.
Introduction of fine changes on PV-map level. The outcomes of this ex-
periment stand for a proof of concept that brain MRI synthesis may be controlled
by changing My, as the changes are reflected in the sIj;ry, while the model still
preserves accurate tissue borders. To validate stability, we assessed the ability
of the model to preserve fine changes (in this case seven voxels only) in M, by
verifying if the changes are reflected in sIj;rr. Both the changed and unchanged
M,,,, were used to generate sIjrry, which were further used to derive sMp,. We
obtained the introduced changes in sly/grr and sM,, as shown in Fig.

4 Conclusion

In this work, we tackle the problem of synthesising 3D brain T1-w MRIs with
accurate borders between tissues. This is an important feature in the context of
medical image applications related to cortical thickness estimation and segmen-
tation. We propose a framework that exploits PV-map properties and demon-
strate that it performs better when it comes to synthetic MRI generation with
accurate tissue borders compared to binary-map-based alternative. Moreover, we



3D Brain MRI GAN-based synthesis conditioned on Partial Volume Maps 9

show that even fine changes introduced on PV-maps are reflected in synthetic
images. This implies the possibility of using the framework as a data augmenta-
tion mechanism and it will be further explored in our future work.
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