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Figure 1. Qualitative evaluation of six 3D surface reconstruction methods using our SALVE dataset. On the left, we present COLMAP, a
classic photogrammetric pipeline, which represents typical methods utilised for 3D reconstruction. Next, we display two Gaussian splatting
approaches SuGaR [13] and 2DGS [14], followed by two NeRF approaches Neuralangelo [24] and Neus-facto [51]. To highlight surface
regularity—important for wound analysis—we present depth color-coded from blue (far regions) to red (closer regions).

Abstract

Managing chronic wounds is a global challenge that
can be alleviated by the adoption of automatic systems
for clinical wound assessment from consumer-grade videos.
While 2D image analysis approaches are insufficient for
handling the 3D features of wounds, existing approaches
utilizing 3D reconstruction methods have not been thor-
oughly evaluated. To address this gap, this paper presents
a comprehensive study on 3D wound reconstruction from
consumer-grade videos. Specifically, we introduce the
SALVE dataset, comprising video recordings of realistic
wound phantoms captured with different cameras. Using
this dataset, we assess the accuracy and precision of state-
of-the-art methods for 3D reconstruction, ranging from tra-
ditional photogrammetry pipelines to advanced neural ren-
dering approaches. In our experiments, we observe that
photogrammetry approaches do not provide smooth sur-
faces suitable for precise clinical measurements of wounds.
Neural rendering approaches show promise in addressing
this issue, advancing the use of this technology in wound
care practices. We encourage the readers to visit the project
page: SALVE.

1. Introduction

Chronic wounds represent a significant health and eco-
nomic burden worldwide [33, 49]. Effective wound treat-
ments depend on multiple wound clinical measurements,
typically performed manually by specialized healthcare
professionals [19, 31]. For instance, wound surface area is
typically measured by performing planimetry of the wound
bed [34]. These procedures are not only invasive and cause
patient discomfort but are also prone to errors due to am-
biguous definitions of metrics and variations in profession-
als’ skill levels. Moreover, this method is neither cost-
effective nor scalable, as it requires specialized personnel
who are often not available in remote areas.

Automatic measurement systems using computer vision
and off-the-shelf cameras offer a promising avenue for
wound care [5,12]. However, most existing commercial ap-
proaches [1, 2] compute wound measurements solely from
2D images, which are inherently inaccurate for wounds with
complex geometry or located on highly curved body parts
such as the heel, toe, and lower leg. Also, 2D wound mea-
surements are perspective-dependent. As illustrated in Fig-
ure 2, wound measurements such as surface area can vary
significantly when computed from images taken from dif-
ferent view angles. Furthermore, these approaches can not
estimate wound depth, potentially overlooking a crucial as-
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Figure 2. Limitation of 2D Wound Analysis: Images of a wound
taken from different view perspectives will present significantly
different wound areas.

pect of the wound healing process.
In response to these limitations, 3D reconstruction tech-

niques can be leveraged to generate 3D models from short
videos depicting the wound from multiple viewpoints. Sub-
sequently, measurements can be directly computed in 3D.
This approach ensures that measurements conducted on the
reconstructed geometry are independent of the view di-
rection. Additionally, 3D analysis of wounds allows for
the computation of richer wound biomarkers, which could
streamline wound documentation [16]. Leveraging these
prospects, several works have advocated for 3D wound
documentation [4, 6, 9, 15, 16, 21, 22, 26, 40]. However,
these studies only considered previous generation 3D recon-
struction frameworks, which have recently been surpassed
by highly optimized photogrammetric toolboxes and recent
neural rendering alternatives.

More importantly, no studies to date have thoroughly
evaluated and compared the effectiveness of 3D reconstruc-
tion methods specifically applied to wound reconstruction
from videos. To address this gap, we introduce a new
dataset SALVE, designed to capture common challenges
encountered in clinical settings, such as complex lighting
conditions and varied image quality and resolution of real-
istic silicone wounds. Using this dataset, we evaluate robust
photogrammetry pipelines and modern neural rendering ap-
proaches for 3D reconstruction. Our work includes a rigor-
ous evaluation protocol that defines metrics and procedures
to assess the geometric accuracy and precision of the evalu-
ated reconstruction algorithms.

We believe that this study is crucial to the develop-
ment of reproducible research in the area of wound anal-
ysis and is a valuable contribution to the field of computer
vision through the introduction of a new challenging task.
Our benchmark highlights novel avenues for the use of
neural 3D reconstruction in a medical setting and exhibits

some limitations of current state-of-the-art (SOTA) meth-
ods when applied in this difficult scenario. We highlight the
robustness of different 3D reconstruction algorithms with
respect to the quality of the acquisition device and demon-
strate that some approaches show significant degradation in
performance on lower-end devices. We aim for this research
to pave the way towards the development of affordable
wound telehealth solutions and further reduce geographic
inequalities in wound care access.

2. Related Work
3D wound analysis has been a topic of interest for at

least fifteen years [44], and its advantages over 2D meth-
ods and manual procedures have been highlighted in mul-
tiple clinical studies in wound care [21, 42]. However, to
the best of our knowledge, no study proposing a rigorous
and unified evaluation of the accuracy and repeatability of
state-of-the-art methods for 3D reconstruction applied to
wound reconstruction from consumer-grade cameras exists.
Most existing works in this field focus on the repeatabil-
ity and accuracy of specific wound measurements computed
from images, pairs of images, or videos [6, 26, 28, 36, 52].
These studies typically use a single device and follow
a particular acquisition protocol, without evaluating the
3D reconstruction itself. For instance, [52] conducted an
inter-laboratory comparative study between photogrammet-
ric and 3D scanner-based volume estimation of skin ul-
cers. Similarly, [26, 28] performed experiments compar-
ing wound area measurements using 2D and 3D meth-
ods. Lastly, [36] extended this analysis to nine differ-
ent wound measurements performed by dermatologists and
non-experts, using automatic and semi-automatic tools for
wound measurements. The findings of these studies are lim-
ited to those specific measurements and cannot be general-
ized (e.g. different wound shapes, different devices, other
wound etiology, and acquisition protocols,...).

Similar to our work, [8, 40, 44] evaluated the accuracy
and repeatability of 3D reconstruction methods for wound
analysis by comparing 3D models produced by these tech-
niques with 3D models obtained with specialized 3D scan-
ners. However, [40,44] used a single artificial phantom cre-
ated by a special effects artist as their input dataset. [8] used
short video recordings of cutaneous leishmaniasis skin le-
sions, which are flat-looking and lack significant 3D fea-
tures such as depth and complex shapes. These works also
focused solely on a single acquisition device and used very
simple photogrammetric pipelines. In contrast, our evalu-
ation includes three types of wounds with rich 3D infor-
mation for proper wound documentation, two acquisition
devices, and state-of-the-art photogrammetric pipelines, as
well as modern neural rendering approaches for 3D recon-
struction. Additionally, unlike existing works, we will make
our data and code publicly available for research purposes.
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Figure 3. Materials used for acquiring the proposed dataset, including a picture of a recording session.

Recently, studies have proposed evaluating 3D wound
analysis methods in fully controlled synthetic 3D environ-
ments created with 3D computer graphics software or game
engines. Lebrat et al. released Syn3DWound [22] and Sinha
et al. released DermSynth3D [41]. Although one could uti-
lize it to simulate some noise characteristics present in real-
istic settings, modeling the entire complexity of clinical en-
vironments paired with consumer device limitations is im-
practical. This could lead to a reality gap in performance in
the target application.

3. Materials and Method
3.1. SALVE

To unify the evaluation protocol for 3D wound recon-
struction and address the gap between synthetic and real-
world acquisition, we propose SALVE, a 3D wound recon-
struction benchmark from consumer-grade camera footage.
Given the ethical considerations associated with human
data, and the time required to evaluate different data acqui-
sition devices and settings, we opted for the use of high-
quality silicone phantoms provided by TraumaSIM 1. In
Figure 3, we display the different wound types utilized in
our study, denoted as SD (Surgical Wound Dehiscence),
PIS3 (Pressure Injury Stage 3), and PIS4 (Pressure Injury
Stage 4).

To encompass the variability of the acquisition device,
we captured videos using both a smartphone (iPhone 14 Pro
Max, 4K frames 2160 × 3840) and a webcam (Logitech 4K
Webcam, 1K frames 1080 × 1920) under realistic lighting

1https://traumasim.com.au/ (a private company specialized in medi-
cally accurate simulations of realistic wounds to assist the training of
healthcare professionals)

conditions, capturing reflections, shadows, and blurriness.
Accurate 3D ground-truth point clouds were obtained us-
ing the Revopoint POP 3D scanner 2. Figure 3 shows an
example of our acquisition materials and setup.

To mitigate noise and blurriness from video recordings,
we devised a method that extracts a collection of sharp
frames from each recorded video. We initially sample
frames at 60 frames per second from each video. Then, we
divide these frames into equal-sized consecutive frame se-
quences. From each sequence, we select the sharpest frame
based on the variance of a 3x3 Laplacian filter applied to
it. Using the recorded videos and this frame selection pro-
cedure, we generate various image datasets to support the
evaluations outlined in Section 3.3.

3.2. 3D Reconstruction Methods

The goal of 3D reconstruction is to estimate the 3D rep-
resentation of a scene depicted in a set of images. Tradi-
tionally, this task is tackled by photogrammetry pipelines,
which can be summarized in two main steps. The first step
consists of solving a Structure from Motion (SfM) [3, 43]
problem, which produces a sparse reconstruction. By
matching features across images, an SfM algorithm re-
gresses both the 3D structures and the camera matrices. The
second step involves a Multi-View Stereo (MVS) [7,29] ap-
proach, which establishes denser correspondences between
image pairs using stereo matching and patch warping [10].
Finally, a triangle mesh is generated by applying a meshing
algorithm [18, 23] to the obtained dense reconstruction.

As mentioned earlier, existing works on 3D reconstruc-
tion of wounds from videos follow this approach. For in-
stance, [40] and [6] leverage well-established frameworks,

2https://global.revopoint3d.com/pages/face-3d-scanner-pop2
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such as COLMAP [38,39] and OpenSFM [32], respectively.
However, they rely on accurate feature correspondences be-
tween images, which can be challenging in videos recorded
in clinical settings due to complex lighting, moving shad-
ows, and self-occlusions. These factors often lead to errors
and discontinuities in the reconstructed 3D model.

A novel trend in 3D reconstruction involves using learn-
able implicit primitives paired [27] with volumetric render-
ing [17]. As detailed in [27], these approaches express the
color of a pixel Ĉ as,

Ĉ(r)=

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

where r(t) is a time-parametrized ray for the pixel Ĉ, c is a
learnable function depending on the 3D space location and
the view direction d, responsible for the color information
of the neural radiance field, and σ depends only on the spa-
tial coordinate. In this formulation, the density σ(x) can
be interpreted as the probability of a ray being stopped at
x, and a 3D model can be obtained via iso-surface extrac-
tion algorithms. However, σ is often implemented as an
over-parameterized neural network without surface regular-
ity constraints, which frequently results in 3D reconstruc-
tions with floaters or non-smooth surfaces [48]. These sur-
face artifacts could compromise the reliability of clinical
wound measurements, making them unsuitable for longitu-
dinal tracking.

To improve the quality of the reconstructed geometry,
multiple works [45, 47] propose deriving the density func-
tion σ from a learnable Signed Distance Field (SDF), en-
abling surface regularity modelling within the standard vol-
umetric rendering framework. For instance, in [45], σ is
defined to be maximal at the zero-crossings of the SDF fθ,

σ(x) =max

(
−H ′(fθ(x))

H(fθ(x))
, 0

)
, (2)

where H is the cumulative distribution function of the lo-
gistic distribution, and θ represents the model parameters
to be learned through volumetric rendering. In this formu-
lation, fθ is subject to the eikonal constraint, and further
regularizations, such as curvature [24], can be defined on
this implicit representation of objects. The training time
for such approaches is in the order of several hours, which
limits their applicability in some clinical settings. To re-
duce the training time associated with the discretization of
the rendering Equation (1), a novel family of methods has
emerged. They propose an unstructured representation of
radiance fields. Gaussian Splatting directly optimizes the
position and variance of 3D Gaussians [20]. This represen-
tation remains volumetric but can be rasterized more effi-
ciently by applying 2D projection and alpha-compositing.

However, Gaussian splatting does not allow for precise
surface extraction. SuGaR [13] and 2DGS [14] proposed

two different formulations amenable to surface extraction
from a 3D sparse representation. Although similar in con-
cept, they differ in their problem approach. SuGaR enforces
additional constraints on the learned Gaussians to more ac-
curately represent the geometry of the scene. More specif-
ically, the Gaussians should have limited overlap with their
neighbors, be as opaque as possible, and be as thin as pos-
sible in the normal direction of the surface. Under those
assumptions, the neural density of the field can be approxi-
mated using,

σ̂(x) = exp

(
− 1

2s2g⋆

⟨x− µg⋆ ,dg⋆⟩2
)
, (3)

where g⋆ is the index of the closest Gaussian to x, sg⋆ is its
smallest scaling factor, and dg⋆ is the associated direction.
By penalizing the 3D Gaussians to achieve such density, one
can significantly enhance the geometric information. Fi-
nally, by deriving a set of points and their normals from the
Gaussian density, one can employ Poisson reconstruction to
swiftly extract a surface mesh with improved quality.

On the other hand, 2DGS proposes to remove the ex-
tra dimension dg⋆ and replace the 3D Gaussian with a 2D
Gaussian, a multiview-consistent primitive more suited for
surface extraction. Both of these explicit formulations re-
duce runtimes compared to their continuous SDF counter-
part. However, they may fall short of providing the regular-
ity required for our application.

Benchmarked methods: We compare three proven pho-
togrammetry pipelines: COLMAP [37] (CM), COLMAP
equipped with LightGlue feature matching [25] (LGCM),
and Meshroom [11] (MR). Additionally, leveraging the
computed image poses from LGCM, we benchmark recent
AI-based methods for 3D reconstruction. These include
Neural Signed Field techniques like NeusFacto [51] and
NeuralAngelo [24], as well as discrete explicit approaches
such as 3D Gaussian Splatting (3DGS) [20] for rendering
and SuGaR [13] or 2D Gaussian Splatting [14] for 3D re-
construction. Finally, we experimented with fast methods
using Neural Hash encoding such as InstantNGP [30] for
rendering and NeuS2 [47], its SDF-based variant. We also
explored SfM-free approaches like DUSt3R [46], an end-
to-end stereo 3D reconstruction method.

3.3. Experiments Description

For 3D wound reconstruction methods to be valuable in
research and clinical settings, they must be both accurate
and precise. Accuracy assesses how closely a reconstruc-
tion matches the ground truth, while precision (or relia-
bility and repeatability) measures the consistency between
repeated reconstructions. This consistency is essential for
verifying the robustness to varying input data and ensur-
ing suitability for tracking wound measurements over time.
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Accuracy

iPhone Logitech

Wound Method AD W2 HD HD90 NC W2-NC t CPU GPU AD W2 HD HD90 NC W2-NC t CPU GPU

PIS3

CM 0.305 1.702 2.757 0.624 0.812 0.797 1.26h 10.1GB 4.73GB 0.696 3.106 14.775 2.131 0.745 0.564 31.2m 2.8GB 2GB
LGCM 0.259 1.632 2.858 0.516 0.830 0.823 1.29h 11GB 14.1GB 0.751 4.470 12.131 2.653 0.739 0.549 31.7m 2.7GB 4.4GB

*MR 0.230 1.575 1.272 0.454 0.992 0.991 15.3m 8GB 1.3GB 0.249 1.572 79.029 0.504 0.990 0.990 4.3m 4.7GB 0.7GB
SuGaR 0.806 4.011 9.657 1.746 0.906 0.822 1.23h 5.7GB 71.1GB 1.075 2.336 6.317 2.342 0.898 0.869 45.6m 6GB 20.4GB
2DGS 0.757 3.069 6.730 1.695 0.726 0.682 1.66h 23.5GB 31.4GB 1.402 3.826 7.380 3.170 0.789 0.759 27.6m 19.6GB 7.8GB

Neuralangelo 0.257 1.614 1.359 0.506 0.992 0.992 15.54h 7.1GB 9.7GB 0.982 1.990 14.605 2.123 0.977 0.967 8.17h 4GB 9.7GB
Neus-facto 0.282 1.669 1.681 0.569 0.993 0.993 55.4m 19GB 24.3GB 0.263 1.612 1.632 0.621 0.993 0.993 46.8m 12.2GB 13.9GB

PIS4

CM 0.215 1.572 2.689 0.499 0.853 0.843 1.27h 10.3GB 4.7GB 0.827 3.668 12.438 2.262 0.806 0.697 31m 2.8GB 2GB
LGCM 0.216 1.766 2.313 0.503 0.868 0.859 1.3h 10.5GB 14.2GB 1.068 6.638 19.263 3.874 0.766 0.559 32.7m 3.5GB 4.4GB

*MR 0.192 1.556 2.664 0.475 0.991 0.984 15.8m 7.7GB 1.3GB 0.424 1.779 3.503 1.030 0.982 0.980 4.4m 4.7GB 0.7GB
SuGaR 0.657 2.003 4.608 1.437 0.950 0.942 1.2h 5.1GB 61.6GB 3.342 7.144 17.882 10.957 0.709 0.462 42.38m 6GB 21.5GB
2DGS 0.747 2.570 6.364 1.835 0.833 0.808 1.61h 23.5GB 24.2GB 1.057 2.623 7.203 2.409 0.858 0.846 27.3m 16.2GB 5GB

Neuralangelo 0.178 1.546 2.472 0.427 0.992 0.985 16.37h 7.7GB 9.7GB 0.953 2.076 3.165 2.006 0.972 0.975 8.15h 4.3GB 9.7GB
Neus-facto 0.217 1.555 2.301 0.539 0.991 0.985 51.8m 19GB 24.2GB 0.256 1.607 2.567 0.639 0.991 0.985 47.6m 12.2GB 14GB

SD

CM 0.355 7.547 9.956 0.730 0.887 0.817 1.2h 10GB 4.7GB 0.963 8.467 26.819 2.962 0.775 0.578 32.7m 3GB 2GB
LGCM 0.366 7.297 16.488 0.722 0.892 0.819 1.3h 10.5GB 14.1GB 0.595 7.639 23.129 1.648 0.828 0.687 33.7m 3GB 4.4GB

*MR 0.357 7.765 3.292 0.836 0.979 0.924 13.9m 7.2GB 1.3GB 0.736 7.701 5.767 1.866 0.956 0.933 4.5m 4.7GB 0.7GB
SuGaR 0.698 8.455 9.625 1.559 0.932 0.823 1.25h 5.6GB 94GB 2.295 11.394 15.475 6.473 0.767 0.597 43.9m 5.9GB 19.5GB
2DGS 1.195 8.315 8.274 2.484 0.872 0.830 1.65h 23.5GB 24.6GB 1.846 9.076 10.209 3.818 0.849 0.804 26.2m 13GB 5.5GB

Neuralangelo 0.201 7.149 3.115 0.439 0.980 0.906 14.23h 5.6GB 9.7GB 0.547 7.460 5.529 1.366 0.957 0.935 8.1h 5GB 9.7GB
Neus-facto 0.230 7.257 3.048 0.510 0.986 0.925 52.5m 19GB 24.2GB 0.428 7.192 5.045 1.034 0.975 0.939 46.2m 12.2GB 14GB

Table 1. Table presenting the accuracy of different 3D reconstruction methods across three wound types (PIS3, PIS4, and SD) and two
acquisition devices (iPhone and Logitech). Results highlight the superiority of Meshroom (MR), Neuralangelo, and Neus-facto across six
metrics evaluated: AD, W2, HD, and HD90 (reported in millimetres), along with NC and W2-NC values (ranging from 0 for orthogonal
to 1 for the same orientation). Meshroom emerges for best time complexity (t), while SuGaR and 2DGS require the most memory.*Due to
compatibility issues during the setup of Meshroom with our H100 GPUs we used an HPC node with an NVIDIA RTX A6000 instead.

Additionally, these methods can serve as powerful tools for
wound visualization. We evaluate the approaches above
based on these three criteria, which are detailed below.

Accuracy Evaluation: From each recorded video in our
dataset, we initially curated a set of fifty frames using the
frame selection procedure detailed in Section 3.1. We chose
fifty frames as we observed that adding more frames did
not enhance wound visibility and sometimes compromised
the accuracy of SfM pose estimation due to the inclusion of
blurry frames. Using these frames, we generated 3D mod-
els of the wounds using the methods outlined in Section 3.2
and compared their results to the ground truth obtained with
the specialized 3D scanner detailed in Section 3.1. The out-
comes of this experiment are presented in Table 1.

Precision Evaluation: We evaluate the consistency of
3D reconstruction methods across different camera devices
(inter-device) and recording attempts (inter-recording).
From each video in our dataset, we selected 150 sharp
frames using the procedure outlined in Section 3.1.
These frames were then temporally divided into fifty sub-
sequences, each containing three frames. Within each sub-
sequence, the frames were randomly assigned to separate
splits, resulting in three data splits of fifty frames for each
video.

For inter-device precision, we compare all pairs of 3D
reconstructions generated by each method using data splits
generated from different recording devices for the same
wound. To assess inter-recording precision, we focus only
on data splits derived from videos recorded with the iPhone.
Then, we compare all pairs of 3D reconstructions produced

by each method from these data splits of the same wound.
The results of this experiment are presented in Table 2.

Rendering Quality: To evaluate the suitability of the 3D
reconstruction methods as visualization tools (excluding the
photogrammetric pipelines), we assessed their rendering ca-
pability for view perspectives not present in the input train-
ing images. To this end, we extract 75 frames from each
video in our dataset using our frame selection procedure,
divide them into 50 training images and 25 test images with
different poses and visual content, as suggested in [50]. We
then train each AI-based 3D reconstruction model on the
training set and evaluate their rendering quality on the test
images. Table 3 presents the results of this experiment.

Evaluation Protocol: The evaluation protocol involves
an initial coarse alignment of the 3D reconstructions with
the ground-truth acquired data. Specifically, ArUco mark-
ers are placed in each scene to retrieve a global transfor-
mation and scale the 3D reconstruction for evaluation. We
emphasize that these markers are not utilized for pose esti-
mation or any other process by the evaluated methods. A
common next step is applying the Iterative Closest Point al-
gorithm (ICP) [35] for fine alignment. However, the conver-
gence of the ICP algorithm can be affected by errors in the
reconstructed geometry. Some variations of the algorithm
have been proposed to address these issues [35], but these
heuristics are often difficult to implement robustly across
all evaluations. Consequently, we opted to conduct manual
alignment using 3D point cloud and mesh processing soft-
ware. To ensure a fair and transparent evaluation, we pro-
vide the manually aligned meshes alongside the datasets.
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Table 2. Table presenting the precision of the best methods from the accuracy experiment. We report precision for inter-recording in the
iPhone acquisitions and inter-device across the three wound types. Results highlight Neus-facto as the most robust method among those
evaluated.

Precision

Inter recording (iPhone) Inter device

Wound Method AD W2 HD HD90 NC W2-NC AD W2 HD HD90 NC W2-NC

PIS3
MR 0.089 0.671 2.099 0.138 0.994 0.970 0.224 0.617 2.266 0.441 0.991 0.979

Neuralangelo 0.102 0.405 0.452 0.183 0.997 0.997 0.865 1.578 9.191 1.611 0.981 0.966
Neus-facto 0.126 0.457 0.476 0.229 0.997 0.997 0.197 0.493 0.854 0.382 0.998 0.998

PIS4
MR 0.216 0.542 1.990 0.499 0.988 0.989 0.441 0.736 2.646 0.946 0.984 0.984

Neuralangelo 0.093 0.443 1.382 0.160 0.994 0.992 0.645 1.000 3.256 1.482 0.983 0.982
Neus-facto 0.099 0.449 0.593 0.176 0.995 0.994 0.286 0.561 1.556 0.548 0.992 0.992

SD
MR 0.347 0.826 5.954 0.710 0.978 0.976 0.663 1.676 5.041 1.449 0.961 0.952

Neuralangelo 0.279 0.888 2.078 0.533 0.984 0.974 0.330 0.916 2.363 0.657 0.979 0.973
Neus-facto 0.279 0.935 2.122 0.608 0.986 0.987 0.346 0.886 2.516 0.709 0.984 0.984

Metrics: To ensure that our evaluation concentrates
solely on the wound area, we define a polygon around the
wound in both the reconstructed mesh and the ground-truth
point cloud. Within this polygon, we compute the fol-
lowing 3D reconstruction metrics: Average Distance (AD),
Earth mover’s Distance (W2), Hausdorff Distance (at per-
centiles 100th (HD) and 90th (HD90)), and Normal Con-
sistency (NC). We also leverage the optimal transport cou-
plings computed for W2 to measure the normal consistency
metric under optimal transport’s assignment (W2-NC). The
metrics AD, W2, and HD variants are measured in millime-
ters, while NC and W2-NC assess the alignment between
reconstructed surface normals and ground-truth normals,
achieving a maximum value of one for perfect alignment.
Finally, for assessing rendering quality, we adopt standard
metrics from the NeRF literature: Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity Index Measure (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS).

Additionally, we report in Table 1 reconstruction time (t),
CPU and GPU memory usage of each method. Our exper-
iments were conducted on an HPC node equipped with 16
Intel Xeon Platinum 8452Y CPUs, an NVIDIA H100 GPU,
and 32GB of RAM.

4. Results & Discussion

4.1. Accuracy Evaluation

As shown in Table 1, Meshroom, Neuralangelo, and
Neus-facto consistently outperform other methods in the ac-
curacy evaluation across various metrics, wound types, and
recording devices. In particular, Neuralangelo and Neus-
facto excel with complex wound geometries such as SD and
PIS4. Additionally, Neus-facto exhibits robustness to varia-
tions in recording device quality. Even with Logitech videos
more prone to blurriness and with lower resolution com-
pared to iPhone videos, Neus-facto consistently produces
good results. It particularly excels in NC and W2-NC, high-
lighting the benefit of the SDF formulation in generating

smooth reconstructed surfaces.
In contrast, Gaussian Splatting methods struggle with

sparsely observed regions, inheriting this limitation from
the original 3DGS work. Given our dataset’s realistic sce-
nario design, these methods failed to achieve sufficient ac-
curacy, a finding also reflected in the qualitative assessment
of novel-view renderings.

Regarding fast reconstruction methods such as Instant-
NGP, NeuS2, and DUSt3R, the generated meshes exhibit
poor quality, containing numerous floaters and defects that
do not meet our application’s requirements. Therefore, we
have omitted their results from the main manuscript, but we
provide a qualitative discussion of their results in the sup-
plementary materials. Additionally, the rendering results of
InstantNGP are reported in Table 3.

4.2. Precision Evaluation

In Table 2, we examine the repeatability of the re-
constructions for the most accurate methods identified in
the previous experiment (i.e., Meshroom, Neuralangelo,
and Neus-facto) between different camera devices (inter-
device column) and recording attempts (inter-recording col-
umn). Both Neuralangelo and Neus-facto demonstrate ad-
vantages over Meshroom (the most accurate photogram-
metry method in our evaluation). Remarkably, Neus-facto
exhibits the best performance in the inter-device evalua-
tion, showing the most consistent reconstructions among
the compared methods.

4.3. Qualitative Analysis

We conduct a qualitative analysis of the evaluated mod-
els using error color-coded surfaces. In Figure 4, it ap-
pears that photogrammetric pipelines often yield noisy sur-
faces, primarily due to challenges in stereo matching under
uncontrolled illumination in the videos. Similarly, Gaus-
sian splatting approaches encounter similar difficulties due
to the Gaussians’ initialization based on the SfM point
cloud. While these points reflect the challenges associ-
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Figure 4. Figure depicting the reconstructed surfaces, where the color represents the distance to the closest point in the ground-truth point
cloud, obtained from iPhone and Logitech recordings of SD and PIS3 respectively. Additional results for different wounds and devices are
available in the supplementary materials.

Table 3. Table presenting the averaged image metrics for the
novel-view renderings experiment. We compare NeRF and Gaus-
sian splatting methods for the iPhone acquisitions of PIS3, PIS4,
and SD.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time 4k

PIS3 PIS4 SD PIS3 PIS4 SD PIS3 PIS4 SD (Mean)

SuGaR 29.719 30.935 30.869 0.959 0.960 0.954 0.056 0.050 0.053 1.234h
2DGS 30.874 31.489 31.852 0.966 0.965 0.959 0.055 0.050 0.050 1.695h
3DGS 30.642 32.595 31.904 0.967 0.967 0.960 0.049 0.045 0.046 57.8m

Instant-NGP 30.386 30.979 31.068 0.962 0.962 0.957 0.065 0.059 0.061 6.8m
Neuralangelo 33.897 35.560 35.533 0.971 0.973 0.967 0.047 0.039 0.038 17.884h

Neus-facto 32.224 35.096 35.552 0.964 0.972 0.966 0.066 0.038 0.038 1.225h

ated with stereo-matching, Gaussian splatting—which re-
lies on explicit modelling of the neural surface representa-
tion—becomes significantly affected by noise introduced in
the photogrammetry pipelines. In contrast, Neuralanglo and
Neus-facto leverage implicit volumetric rendering based on
the SDF representation of a regular surface, allowing them
to regularize noise that may exist in the training data. This
results in accurate, repeatable, and smooth reconstructions.

Reproducible performance across different imaging de-
vices is a desirable property for telehealth applications. As
detailed in Table 1 and depicted in Figure 5, NeuralAngelo
exhibits a massive performance drop when the quality of
the input images is reduced, we attribute this behavior to the
model’s large size and the reduced photogrammetric consis-
tency between view acquired with a low-resolution device.

4.4. Rendering Quality

In Table 3, Neuralangelo and Neus-facto significantly
outperform Instant-NGP (SOTA approach for novel view
rendering) in terms of image rendering quality. This su-

Figure 5. Figure illustrating the influence of image quality on Neu-
ralangelo’s performance. The best reconstruction was obtained
with iPhone acquisitions, which feature 4K resolution compared to
Logitech’s lower image resolution and quality. From left to right:
reconstructed mesh, error color-coded mesh, a sample image of
the wound sourced from the training set.

perior performance can be attributed to their ability to accu-
rately represent surfaces, mitigating the floaters commonly
found in Instant-NGP and 3DGS, and reducing rendering
artifacts present in novel images that are too different from
the training distribution (see Figure 6). Despite Instant-
NGP’s fast runtime, it was excluded from the quantitative
and qualitative evaluations due to its inability to produce
surface meshes of good quality. Consequently, Neus-facto
emerged as the overall best, balancing the trade-off between
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Figure 6. Qualitative evaluation of rendering methods for the SD wound model. The first row depicts an image in the test set that is
well-represented in the training set. The second row shows a rendering of the wound from an oblique view, where non-implicit methods
may exhibit degraded performance (presence of floaters). The last row displays an image far from the training view distribution, where the
rendering can be challenging due to the scarcity of training views.

reconstruction quality, repeatability, and manageable train-
ing time. Rendered images and additional qualitative results
are made available in the supplementary materials.

5. Conclusion
This paper presents a comprehensive study on 3D wound

reconstruction using consumer-grade videos. We introduce
SALVE, a dataset for 3D wound reconstruction and visu-
alization, featuring video recordings of three wound types
captured with two different cameras. These videos include
photometric challenges typical in clinical settings, such as
transient shadows, motion blur, and specular reflections.
SALVE also provides accurate 3D ground truth acquired
with a commercial 3D scanner and a rigorous evaluation
protocol for assessing the geometric accuracy and preci-
sion of 3D reconstruction methods. Using this dataset, we
explore a wide array of 3D reconstruction methods, from
state-of-the-art neural rendering to traditional photogram-
metry. We believe this study and dataset are crucial for ad-
vancing the use of this technology in wound care practices.

Beyond its clinical significance, this study demonstrates
some limitations of current AI-based approaches, such as
repeatability issues with SfM-initialized methods and the
reduced quality of NeuralAngelo’s 3D reconstruction un-
der degraded image quality. We believe that these findings
and benchmarks will also serve as valuable resources for the
computer vision community.
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Begoña Escutia-Muñoz, and Rafael Botella-Estrada. SfM-
3DULC: Reliability of a new 3D wound measurement proce-
dure and its accuracy in projected area. International Wound
Journal, 19(1):44–51, 1 2022. 2

[37] Johannes Lutz Schönberger and Jan-Michael Frahm.
COLMAP: A general-purpose Structure-from-Motion (SfM)
and Multi-View Stereo (MVS) pipeline. 4

[38] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 4

[39] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 4

[40] Tim Shirley, Dmitri Presnov, and Andreas Kolb. A
lightweight approach to 3D measurement of chronic wounds.
Journal of WSCG, 27(1):67–74, 2019. 2, 3

[41] Ashish Sinha, Jeremy Kawahara, Arezou Pakzad, Kumar
Abhishek, Matthieu Ruthven, Enjie Ghorbel, Anis Kacem,
Djamila Aouada, and Ghassan Hamarneh. Dermsynth3d:
Synthesis of in-the-wild annotated dermatology images.
Medical Image Analysis, 95:103145, 2024. 3

[42] Ekaterina Sirazitdinova and Thomas M. Deserno. System
design for 3D wound imaging using low-cost mobile de-
vices. https://doi.org/10.1117/12.2254389, 10138:258–264,
3 2017. 2

[43] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections in 3d. In ACM siggraph
2006 papers, pages 835–846. 2006. 3

[44] Sylvie Treuillet, Benjamin Albouy, and Yves Lucas. Three-
dimensional assessment of skin wounds using a standard
digital camera. IEEE Transactions on Medical Imaging,
28(5):752–762, 5 2009. 2

[45] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 4

[46] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris
Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vi-
sion made easy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20697–
20709, 2024. 4, 1

[47] Yiming Wang, Qin Han, Marc Habermann, Kostas Dani-
ilidis, Christian Theobalt, and Lingjie Liu. Neus2: Fast
learning of neural implicit surfaces for multi-view recon-
struction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3295–3306, 2023. 4,
1

[48] Frederik Warburg, Ethan Weber, Matthew Tancik, Alek-
sander Holynski, and Angjoo Kanazawa. Nerfbusters: Re-
moving ghostly artifacts from casually captured nerfs. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 18120–18130, 2023. 4

[49] Jo Wilkie, Keryln Carville, Shih Ching Fu, Rhonda Kerr,
Kathleen Finlayson, Tanya Tuffrey, Jason C Lenzo, and Gary
Geelhoed. Determining the actual cost of wound care in aus-
tralia. Wound Practice & Research: Journal of the Australian
Wound Management Association, 31(1):7–18, 2023. 1

[50] Wenhui Xiao, Rodrigo Santa Cruz, David Ahmedt-
Aristizabal, Olivier Salvado, Clinton Fookes, and Leo Le-
brat. Nerf director: Revisiting view selection in neural vol-
ume rendering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2024. 5

[51] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apra-
tim Bhattacharyya, Michael Niemeyer, Siyu Tang, Torsten
Sattler, and Andreas Geiger. Sdfstudio: A unified framework
for surface reconstruction, 2022. 1, 4

[52] Omar Zenteno, Eduardo González, Sylvie Treuillet, Ben-
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SALVE: A 3D Reconstruction Benchmark of Wounds
from Consumer-grade Videos

Supplementary Material

In this supplementary material, we present further details
on the acquisition setup and additional qualitative results,
including error color-coded meshes and novel-view render-
ings. Additionally, we present the non-suitability of the sur-
faces from DUSt3R [46], Instant-NGP [30], and NeuS2 [47]
for geometric assessment.

In Section A we present more details relative to the
SALVE’s dataset challenges. Next, in Section B we de-
scribe more precisely the evaluation protocol, namely a
qualitative evaluation of the ground-truth point clouds and
specifications about sampling of the meshes adopted for the
experiments of Section 3.3 of the main paper. Following,
with respect to Figure 4 and Figure 6 of the main paper,
we present the additional error color-coded meshes (Fig-
ure 4) and renderings (Figure B.4 for PIS3 and Figure B.5
for PIS4) for the remaining devices and wound types we
omitted in the main paper.

In addition, we present the surfaces extracted from
DUSt3R, Instant-NGP, and NeuS2 in Figures B.6, B.7,
and B.8 respectively, and justify why those methods are not
included in 3D reconstruction benchmark.

Finally, in Figure B.9 we present some cases of failed
reconstruction for the photogrammetric approaches when
we input a greater amount of images, specifically 100 and
150. Compared to a set of 50 images, 100 and 150 present
more blurring artefacts as mentioned in Section 3.1 of the
main paper. As a result, we chose sets of 50 images for
our SALVE dataset as they provided more consistent re-
sults and better wound representations when compared to
fewer images.

A. Dataset additional challenges

As depicted in Figure 3 of the main paper, we use a
Logitech 4K webcam and an iPhone 14 Pro Max for video
recordings, and a Revopoint POP 3D scanner to acquire the
ground-truth point clouds. Both recording devices utilise
default acquisition settings (e.g. exposure time, frame rate,
aperture, white balance, etc.) to simulate acquisition sce-
narios as close as possible to a telehealth application, Fig-
ure A.1 shows an example of dynamic lighting conditions
comprised in our dataset. Furthermore, when extracting
frames from the recordings, we select the sharpest frames
as outlined in Section 3.1 of the main paper, however, we
might still observe blurred images in the datasets. An exam-
ple regarding the Logitech recordings is partially observable
from the image in the second row of Figure A.1. Addition-

Figure A.1. Two images of the PIS3 wound type captured from
slightly different angles using the Logitech camera show different
luminosity levels, as indicated by their normalized grayscale his-
tograms (on the right).

ally, SALVE presents moving shadows cast by the operator
during the acquisition, which is a common issue in environ-
ments with multiple illumination sources.

B. Evaluation details
In Figure B.2, we illustrate qualitatively the three

ground-truth point clouds acquired with the Revopoint POP
3D scanner.

For the metrics AD, HD, HD90, and NC we uniformly
sampled 2 million points from the reconstructed meshes,
while for W2 and W2-NC we sampled around 30 thousand
points from the reconstructed meshes due to the computa-
tional complexity of optimal transport metrics.
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Points: 1062568Points: 737921Points: 178770

Figure B.2. Ground-truth point clouds acquired with the Revopoint POP 3D scanner and their respective total number of points. From left
to right: PIS3, PIS4, and SD wound types.

Figure B.3. Reconstructed surface results for different methods, wound types and recording devices. The color represents the distance to
the closest point in the ground-truth point cloud.
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Figure B.4. Qualitative evaluation of rendering methods for the PIS3 wound model. The first row presents the renderings for a view
perspective in the test set that is well-represented in the training set. The second row shows a rendering of the wound from an oblique view,
where we can observe the presence of floaters in non-SDF-based methods. The last row displays a view perspective under-observed in the
training set. Notably, the PIS3 wound type presents hard reflections that appear especially in the first two rows.
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Figure B.5. Qualitative evaluation of rendering methods for the PIS4 wound model. The first row presents the renderings for a view
perspective in the test set that is well-represented in training set, however, floaters are already visible for non-SDF-based methods. The
second row shows a rendering of the wound from an oblique view, where more floaters are present. The last row displays an image from
another view angle where artifacts similar to those in the second row can be observed.
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Figure B.6. Six views of the mesh generated by DUSt3R for the PIS3 wound type. From the middle figure of the second row, we can
observe how DUSt3R does not retrieve accurate geometry. The perimeter of the wound is much higher than the surrounding regions, not
reflecting the real geometry of the scene. DUSt3R, unlike traditional multi-view stereo approaches, do not follow epipolar constraints to
generate the 3D structure but relies on transformers tailored to solve reconstructions from a few views in the wild.

Figure B.7. Six views of the mesh generated by Instant-NGP for the PIS3 wound type. As Instant-NGP is not a method developed for
3D surface reconstruction, its NeRF density is not regularised. As a result, when extracting a mesh using the Marching Cubes algorithm,
it presents a structure similar to the one reported in the figure. Given the absence of surface regularizer terms, Instant-NGP solves pho-
togrammetric consistency by placing density values under the wound’s real surface, creating a scattered reconstruction.
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Figure B.8. Six views of the mesh generated by NeuS2 for the PIS3 wound type. NeuS2 is a fast method for 3D surface reconstruction,
however, we excluded it from our benchmark because it did not perform consistently well in our SALVE dataset. Although more fine-tuning
might be required for SALVE, we considered Neuralangelo and Neus-facto as better representing SDF methods in terms of robustness
against photogrammetric complexities. For example, PIS3 presents hard reflections, as analysed in the renderings evaluation above, and
we can observe in both figures on the right how NeuS2 attempts to satisfy photometric consistency and surface regularization by “pushing”
the surface under the wound level. This behaviour can be attributed to its architecture similar to Instant-NGP.
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Figure B.9. Examples of failed reconstruction while exploring how larger samples of images impact photogrammetric methods. In the first
row, we display examples of 100 and 150 frames sampled from the iPhone sequence of each wound type. Meshroom (MR) was not able to
reconstruct any detail in the wound and surrounding regions. In the second row, we display both COLMAP (CM) and COLMAP equipped
with LightGlue feature matching (LGCM) at 150 frames. While both methods manage to reconstruct the wound area, the quality of the
estimation drastically decreases compared to samples of 50 images.
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