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Structured Supervision

In this thesis, we propose methods that reduce the need for extensive human
supervision by leveraging the structure in the visual world.

Structure In The Outputs
Structure In The Inputs
Structure In The Models
Leveraging Existing Models
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Structure In the
outputs

[On differentiating parameterized argmin and argmax problems with application to bi-level optimization.Stephen
Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, Edison Guo. arXiv preprint
arXiv:1607.05447, 2016.]

[DeepPermNet: Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen
Gould. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]

[Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. Pattern
Analysis and Machine Intelligence (PAMI), 2018.]
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Visual Labels are structured ...
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Image Ranking and Its Applications
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Image Ranking Applications

Product Search Applications

Pearson Re-ldentification

Query:
“black shoes”

- 4

st

N

Feedback: Feedback:

“more formal than these” “shinier than these”

Wit 0\

Initial top
search
results

Refined
top search
results

template galler

NFSETARNL

Ranked List

28



Image Ranking Applications

Product Search Applications

Pearson Re-ldentification

Query:
“black shoes”

st

[\

- 4

Feedback: Feedback:
“more formal than these” “shinier than these”

Wit 0\

Nt

Initial top
search
results

Refined
top search
results

template galler

NP SEYARN £}

Ranked List

Tasks in other fields can be reduced to this problem:
— Computer graphics: Jigsaw puzzle
— Biology: DNA and RNA modeling
— Archeology: Re-assembling relics

*  Archeology: Re-assembling relics
*  Computer Vision: Representation learning.
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Visual Permutation Learning - Task
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Visual Permutation Learning - Learning

Let us define a training set,

D = {(X,P) | X € S¢andVP € P'}

We propose to learn a function that maps from fixed length image sequence to
permutation matrices. Then our permutation learning problem can be described
as,

minignize Z A (P, fo (X)) + R (0)
(X,P)eD
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Geometry of Permutation Matrices
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DeepPermNet - Model
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Sinkhorn Layer

Sinkhorn's theorem: Any non-negative square matrix can be converted to a DSM
by alternating between re-scaling its rows and columns to one.

R Qi oy Qi Col
norma(I)i\;Vation Ri‘j (Q) o Zi ) Q. k: Ct*-? (Q) o ka ) ij normoallji:art]ion
| Q, ifn=20

SF’L —
(@) {C‘ (R(S™'(Q))), otherwise.

Gradient (Row normalization):
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Bi-level Optimization

minignize Z A (P.; Q) + R (0)

(X.,P)eD

subject to Q € argmin HQ - fG(X)H
(_"2 E Rixn

subjectto Q1=1
O"1=1
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Bi-level Optimization

minignize Z A (P.; Q) + R (0)

(X.,P)eD 16 4X4 01|:)o N
N . ~ .0.7.2.1
subject to Q € nargmin HQ — fo(X) H fc8 A @gécﬂ’[&iﬁfé}

T X T
Q€ R,

subject to Q 1=1
Q
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Bi-level Optimization

minignize Z A (P, Q) + R (0)
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Bi-level Optimization

. - - ! = :

minimize | Z AP, Q) +R(0)
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Bi-level Optimization

|
minimize Z A ) + R (0))
(X,P)e : 16 4X4 01I:)o :
— — — .0.7.2.1
subject to () € argmin Q — fG(X)H fc8 A Eﬁﬁﬂ,[ﬁfif%}

|
|
:
: T
! :
: (_'_;J e Rﬂ.xn :
- |
i subjectto Q1=1 :g
| |
| |

We refer to “On differentiating parameterized argmin and argmax problems with application to bi-level
optimization” by Gould et al. for a detailed explanation about computing gradients of argmin functions.
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Visual Permutation Learning - Inference

We can recover the correctly ordered sequence from a permuted sequence by,

1 - Solving a approximation problem (or argmax 2 - Permuting the shuffled image sequence by
rows/cols) the inverse permutation
A=
; + : X=r"X
P € argmin ||P — QH
P F
subjectto FP-1=1
1. P=1

P e {01}
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Visual Permutation Learning - Recap

e Given a set of ordered images Sc according to ¢, we build a data set D as,

D = {(X,P) | X € S¢andVP € P'}

e Using D, we learn a function (CNN) which maps shuffled image sequences to
its DSM matrix employing the sinkhorn layer or bi-level optimization.

fg S — BE

e During test time, we receive a shuffled image sequence and reorder it
according to c by doing,

X = fo() > Infer P - X = PTX

48



Experiments - Permutation Prediction
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Experiments - Relative Attributes

TABLE 1
Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its
mean across the atiributes.

Method Lips | Eyebrows | Chubby | Male | Eyes Nose Face | Smiling | Forehead | White | Young | Mean
Parikh and Grauman [59] 79.17 79.87 76.27 81.80 | 81.67 | 77.40 | 82.33 79.90 87.60 76.97 83.20 80.56
Li et al. [46] 81.87 81.84 79.97 85.33 | 83.15 | 8043 | 86.31 83.36 88.83 82.59 84.41 83.37
Yu and Grauman [82] 00.43 89.83 87.37 901.77 | 9140 | 89.07 | 86.70 87.00 94.00 87.43 91.87 89.72
Souri et al. [71] 03.62 04.53 92.32 05.50 | 93.19 | 94.24 | 94.76 95.36 97.28 94.60 04.33 04.52
DeepPermNet (Sinkhorn Norm.) | 99.55 97.21 97.66 99.44 | 96.54 | 96.21 | 99.11 97.88 99.00 97.99 99.00 98.14
DeepPermNet (Bi-level Opt.) 09.53 96.65 98.54 08.99 | 97.21 | 94.72 | 99.44 98.55 98.77 05.66 98.77 97.89
TABLE 2

Evaluating the proposed model applied to the relative attributes task on the OSR dataset. We report the pairwise accuracy as well as its mean
across the attributes.

Method Depth-Close | Diagonal-Plane | Natural | Open | Perspective | Size-Large | Mean
Parikh and Grauman [59] 87.53 86.5 95.03 90.77 86.73 86.23 88.80
Li et al. [46] 89.54 89.34 95.24 92.39 87.58 88.34 90.41
Yu and Grauman [82] 90.47 92.43 95.7 94.1 90.43 91.1 92.37
Singh and Lee [69] 96.1 97.64 98.89 97.2 96.31 95.98 97.02
Souri et al. [71] 97.65 98.43 99.4 97.44 96.88 96.79 97.77
DeepPermNet (Sinkhorn Norm.) 96.09 94.53 97.21 96.65 96.46 98.77 96.62
DeepPermNet (Bi-level Opt.) 97.99 98.21 97.76 97.10 97.21 96.65 97.49
DeepPermNet (Sinkhorn Norm. + VGG16) 96.87 97.99 96.87 99,79 99.82 99,55 98.48
DeepPermNet (Bi-level Opt. + VGG16) 98.12 99.92 98.13 97.78 98.72 97.87 98.42
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TABLE 1
Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its
mean across the atiributes.

Method Lips | Eyebrows | Chubby | Male | Eyes Nose Face | Smiling | Forehead | White | Young | Mean
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Evaluating the proposed model applied to the relative attributes task on the OSR dataset. We report the pairwise accuracy as well as its mean
across the attributes.

Method Depth-Close | Diagonal-Plane | Natural | Open | Perspective | Size-Large | Mean
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Souri et al. [71] | VGG 03.62 04.53 92.32 05.50 | 93.19 | 9424 | 94.76 95.36 97.28 94.60 04.33 04.52
DeepPermNet (Sinkhorn Norm.) | _99.55 97.21 97.66 99.44 | 96.54 | 96.21 | 99.11 97.88 99.00 97.99 99.00 98.14
DeepPermNet (Bi-level Opt.) 09.53 96.65 98.54 08.99 | 97.21 | 94.72 | 99.44 98.55 98.77 05.66 98.77 97.89

A = 5.93 71.22 4.68 4.67 3.62

TABLE 2

Evaluating the proposed model applied to the relative attributes task on the OSR dataset. We report the pairwise accuracy as well as its mean
across the attributes.

Method Depth-Close | Diagonal-Plane | Natural | Open | Perspective | Size-Large | Mean
Parikh and Grauman [59] 87.53 86.5 95.03 90.77 86.73 86.23 88.80
Li et al. [46] 89.54 89.34 95.24 92.39 87.58 88.34 90.41
Yu and Grauman [82] 90.47 92.43 95.7 94.1 90.43 91.1 92.37
Singh and Lee [69] 96.1 97.64 98.89 97.2 96.31 95.98 97.02
Souri et al. [71] | VGG 97.65 98.43 99.4 97.44 96.88 96.79 97.77
DeepPermNet (Sinkhorn Norm.) 96.09 94.53 97.21 96.65 96.46 98.77 96.62
DeepPermNet (Bi-level Opt.) 97.99 98.21 97.76 97.10 97.21 96.65 97.49
DeepPermNet (Sinkhorn Norm. + VGG16) 96.87 97.99 96.87 99,79 99.82 99,55 98.48
DeepPermNet (Bi-level Opt. + VGG16) 98.12 99.92 98.13 97.78 98.72 97.87 98.42




Experiments - Relative Attributes

TABLE 1
Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its
mean across the atiributes.
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TABLE 2

Evaluating the proposed model applied to the relative attributes task on the OSR dataset. We report the pairwise accuracy as well as its mean
across the attributes.

Method Depth-Close | Diagonal-Plane | Natural | Open | Perspective | Size-Large | Mean
Parikh and Grauman [59] 87.53 86.5 95.03 90.77 86.73 86.23 88.80
Li et al. [46] 89.54 89.34 95.24 92.39 87.58 88.34 90.41
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DeepPermNet (Bi-level Opt.) 97.99 98.21 97.76 97.10 97.21 96.65 97.49
DeepPermNet (Sinkhorn Norm. + VGG16) 96.87 97.99 96.87 99.79 99.82 99.55 98.48
DeepPermNet (Bi-level Opt. + VGG16) 98.12 99.92 98.13 97.78 98.72 97.87 98.42
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Experiments - Learning to Rank

Permutation prediction + Sorting Algorithm

TABLE 3

Evaluation on supervised learning to rank

Scene interestingness

Car chronology

Method NDCG KT Pair. Acc. | NDCG KT Pair. Acc.
Joachims [29] 0.870 0.317 65.8 0928 04382 74.1
Xu and Li [64] 0.745 -0.077 46.1 0.827  0.118 55.9
Wu et al. [62] 0.860 0.315 64.3 0935 0409 70.6
Cao et al. [8] 0.821 0.118 559 0872  0.291 64.5
Xia et al. [63] 0.862 0.282 64.1 0.854  0.278 63.9
Fernando et al. [19] 0.887 0.347 67.4 949 0.553 76.9
DeepPermNet (Sinkhorn Norm.) 0.922 0.360 68.0 0968  0.724 86.2
DeepPermNet (Bi-level Opt.) 0.923 0.363 68.2 0.964  0.700 84.9
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Structure In The Inputs

[DeepPermNet: Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]

[Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. Pattern Analysis and
Machine Intelligence (PAMI), 2018]
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Self-Supervised Representation Learning

Auxiliary/Pretext Task - Image Jigsaw

.

Target Tasks - Object Recognition

FIES

Classification

Detection

Segmentation

i We hypothesize that the model trained to solve such task is able to capture high-

' level semantic concepts, structure and shared patterns in visual data.




Visual Permutation Learning

e Pretrain in the visual permutation learning:
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Avoiding “Shortcuts”

1. Randomly crop a squared region of
the image;

2. Split the resized crop intoa 3 x 3
grid cell;

3. Randomly select 64 x 64 pixels
tiles from each cell;

Others: Low level statistics and
Chromatic Aberration.
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Existing Self-Supervised Learning Methods

Example:

90° rotation 270° rotation
[Gidaris, et al., ICLR 2018]

—_— — g —

Predicted odd
element

[Fernando et al., ECCV16]
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Pre-training Method Pretext task Cls. | Det. | Seg.
ImageNet Supervised 782 | 56.8 | 48.0
Random Gaussian None 533 | 434 | 19.8
Agrawal et al. [2015] Estimating Ego-motion 529 | 418 -
Doersch et al. [2015b] Context Prediction 55.3 | 46.6 -
Wang and Gupta [2015] Visual tracking 584 | 44.0 -
Pathak et al. [2016] Context autoencoder 56.5 | 445 | 29.7
Donahue et al. [2017] Adversarial Learning 589 | 457 | 34.9
Zhang et al. [2016] Image colorization 65.6 | 479 | 35.6
Noroozi and Favaro [2016] Image jigsaws 67.6 | 532 | 37.6
Owens et al. [2016] Ambient sounds 61.3 | 44.0 -
Bojanowski and Joulin [2017] Alignment with noisy targets | 65.3 | 494 -
Noroozi et al. [2017] Counting visual primitives 67.7 | 514 | 36.6
Lee et al. [2017] Sorting sequences 63.8 | 469 -
Pathak et al. [2017] Motion-based segmentation | 61.0 | 52.2 -
Zhang et al. [2017b] Cross-channel prediction 67.1 | 46.7 | 36.0
Larsson et al. [2017] Image colorization 65.9 - 38.0
Jenni and Favaro [2018] Predicting synthetic artifacts | 69.8 | 52.5 | 38.1
Gidaris et al. [2018] Predicting image rotation 7297 | 544 | 39.1
Kim et al. [2018] Damaged image jigsaws 69.2 | 524 | 39.3
Nathan Mundhenk et al. [2018] Improved context prediction | 69.6 | 55.8 | 41.2
Ren and Jae Lee [2018] Multi-task 68.0 | 52.6 -
DeepPermNet (Sinkhorn Norm.)" | Visual Permutation Learning | 69.4 | 495 | 37.9
DeepPermNet (Bi-level Opt.) Visual Permutation Learning | 65.5 | 45.7 | 36.4
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DeepPermNet (Sinkhorn Norm.)" | Visual Permutation Learning | 69.4 [ 495 | 37.9
DeepPermNet (Bi-level Opt.) Visual Permutation Learning | 65.5 | 45.7 | 36.4

A(Det) = 6%
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Structure In The
Models

[Neural Algebra of Classifiers. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE Winter
Conference on Applications of Computer Vision (WACV), 2018.]
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Compositional Model

97



Compositional Model

Which one is an albatross?

98



Compositional Model

Which one is an albatross?
Albatrosses are birds with hooked beak and large wingspan.

99



Compositional Model

Which one is an albatross?
Albatrosses are birds with hooked beak and large wingspan.

Albatross

100



Compositional Model
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Compositional Model

Which one is an albatross?

Albatrosses are birds with hooked beak and large wingspan.
Which one is a frigatebird? _ _

Frigatebirds seem black albatrosses with white or red pouch.

Albatross
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Compositional Model

Which one is an albatross?

Albatrosses are birds with hooked beak and large wingspan.
Which one is a frigatebird? _ _

Frigatebirds seem black albatrosses with white or red pouch.
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Compositional Model

Which one is an albatross?
Albatrosses are birds with hooked beak and large wingspan.
Which one is a frigatebird?
Frigatebirds seem black albatrosses with white or red pouch.

ez & 7% A
<ot ta ' 1) -

tews e

Albatross

Frigatebird

The human recognition system is fundamentally compositional, so
unseen visual complex concepts are recognized from the composition
of simple visual primitives according to well-defined rules.

104



Neural Algebra Of Classifiers
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Primitive Visual Concepts
Large wingspan (lw)

Large
wingspan (Iw)
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Neural Algebra Of Classifiers

Large
wingspan (Iw)

Hooked
beak (hb)

Primitive Visual Concepts
Large wingspan (lw)

A = lw AND hb

Neural
Algebra of Classifiers

Non-hooked beak
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Neural Algebra Of Classifiers

Primitive Visual Concepts

Large wingspan (Iw) \ A =Iw and hb
o
G [Wibwl | [Wyiba]
Large >y - &= HE B -
wings wi '
g pan (IW) Small wingspan 'L ‘ l
Neural
Algebra of Classifiers

Hooked beak (hb) \
Hooked
beak (h b) Non-hooked beak
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Neural Algebra Of Classifiers

Primitive Visual Concepts Complex Visual Concepts

Large wingspan (lw) A=Ilwand hb Albatross (A)

D
o
G (Wowl | (W, :
Large N N e 10T Albatross (A)
W|ngspan (IW) Small wingspan 'L ‘ l Other Birds
Neural
Algebra of Classifiers

Hooked beak (hb) \
Hooked
beak (h b) Non-hooked beak
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Neural Algebra Of Classifiers

Complex Visual Concepts

A — |W and hb Albatross (A)

Primitive Visual Concepts
Large wingspan (lw)

-:0\?!‘ 1 — .
Gl AL I CA -
Large N N e 10T Albatross (A)
W|ngspan (IW) Small wingspan 'L ‘ l Other Birds
Neural

Algebra of Classifiers

Hooked beak (hb) \

Hooked
beak (hb)

G = (NOT Iw) AND hb
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Neural Algebra Of Classifiers

Complex Visual Concepts

A — |W and hb Albatross (A)

Primitive Visual Concepts
Large wingspan (lw)

o D -
G (@ybwl | [ -
Large = *~———= 1T Albatross (A)
W|ngspan (IW) Small wingspan 'L ‘ l Other Birds

Neural
Algebra of Classifiers
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G = (NOT Iw) and hb
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Neural Algebra Of Classifiers

Complex Visual Concepts

A — |W and hb Albatross (A)

Primitive Visual Concepts
Large wingspan (lw)

o
G Fbwl | [Fiba)
Large ) o == 1T - Albatross (A)
W|ngspan (IW) Small wingspan 'L * l Other Birds
Neural
Algebra of Classifiers
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Closed World Assumption

Training Data

: person

Person
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Closed World Assumption

Test Data

Training Data

Person
Car
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Closed World Assumption

Test Data
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Learning

We propose to learn a function fy(-) that maps the space of expressions to
the space of binary classifiers:
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Training:
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Learning

We propose to learn a function fg(-) that maps the space of expressions to
the space of binary classifiers:

Training: Test:
E+E
Training Training

Expressions Images

121



Learning

We propose to learn a function fg(-) that maps the space of expressions to
the space of binary classifiers:

Training: Test:
E+ 0 E+ =
Training Training Training Validation

Expressions Images Expressions Images
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Learning

We propose to learn a function fg(-) that maps the space of expressions to
the space of binary classifiers:

Training: Test:
y "
£+ + E+
~——
Training Training Training Validation Test Test
Expressions Images Expressions  Images Expressions  Images
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Learning

We propose to learn a function fg(-) that maps the space of expressions to
the space of binary classifiers:

Training: Test:
E+ E+E E+=
N—
Training Training Training Validation Test Test
Expressions __  Images Expressions  Images Expressions ~ Images

e
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Learning

We propose to learn a function fg(-) that maps the space of expressions to
the space of binary classifiers:

Training: Test:

. . I | g
(e E+E E+=
Training Training Training Validation Test Test

Expressions __  Images Expressions  Images Expressions ~ Images

e
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Learning

We propose to learn a function fg(-) that maps the space of expressions to

the space of binary classifiers:
Training:

|_Training data_J

1 — T i)

Training Training
Expressions Images

Test:
| i
E+E E+=
~——
Training Validation Test Test
Expressions Images Expressions  Images

[

Generalize }

e
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Learning

We propose to learn a function fg(-) that maps the space of expressions to
the space of binary classifiers:

Training: Test:
| Lraining data_j Unknown exp.
Training Training Training  Validation Test Test
Expressions __  Images Expressions  Images Expressions ~ Images

4
-[ d }
—
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Model

Expression (&)

Primitives

"Blue or Red Socks without Holes”

Images (x, vy)
Positives Megatives

JU &

Neural Algebra of Classifiers

gi-.- 20 gi-.» gi-)
PO owm 150 - o o .
==
fale) i T
- |

M ——

Minimize:

fale)T hg(x) _ Als,y) + 0.5||fale)||?+ R(©, @)

Forward  Backprop
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Model

. MNeural Algebra of Classifiers
Expression (&)

20 20 g"l S | gi-
e - I- | =-
Primitives I I - I
"Blue or Red Socks without Holes™ I ?
fale) I I
|
Images (x, y) v ' s
Positives Megatives - T —_——— Minimize:
fole)” halx)  A(s, y) + 0.5||fsle)]|*+ R(O, @)

pu s

We represent primitives by the parameters of one-vs-all SVM classifiers trained on
positives and negatives images of the primitives.

[ Forward an;c_h:prnp |
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Model

Expression (e)

1

Primitives
-me

Images (x, v)

2 .

Positives MNegatives

We represent images in a feature space, e.g., CNN features.

Neural Algebra of Classifiers

= ]

Minimize:

} “ ‘ " e . | fole)T ha(x) w___ Afs,y) + 0.5||fsle)]|*+ R(O, @)
\

Forward an;c_h:prup
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Model

Expression (&)
P ( o gi-.- 20 gi-.-» gi-) N
FD = 150
[Ws:""aiwn:\lhj I_ - -
————— —_ I
'_Primitive 3 | I 1 - I I
"Blue or Red Socks without Holes” k . J

£
|
|
|

Images (x, v)

S
Positives MNegatives N A—

Minimize:

.
} “ ‘ T e N . fole)T ha(x) w___ Afs,y) + 0.5||fsle)]|*+ R(O, @)

| Forward = Backprop |

We model our function as a set of composition functions and simplify them using

simple analytical relations and De Morgan’s laws.
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Model

Neural Algebra of Classifiers

f Expression (e)

SE R

. "Blue or Red Socks without Holes”

Images (x, vy)
—— Minimize:

Positives MNegatives
fol@)T holx) _  A(s,y) + 0.5][fole)]|*+ R(S, ®)

JU &

Farward Back
Lo, Alesianily

We parse the expression tree applying the composition functions recursively.
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Model

Expression (&)

Primitives

"Blue or Red Socks without Holes”

Images (x, vy)
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Neural Algebra of Classifiers
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fale)T hg(x) _ Als, y) + 0.5||fole)||?+ R(©, @)

Farward Back
Lo, Alesianily
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Model

. MNeural Algebra of Classifiers
Expression (&)
20 gi-.- 20 gi-.-» gi-)

[ vt Wi e, | I— [ = P [gt] = : —
i l—l | - =—-~I I == |
I
|

"Blue or Red Socks without Holes™

CNN

Images (x, vy)
—— Minimize:

Positives MNegatives
fol@)T holx) | . A(s.y) + 0.5][fole)]*+ R(S, ®)

JU &

[ Forward _Backprop |

We minimize the classification loss of batches of positive and negative images for
different training expressions.
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Blue or Red Socks Without Holes
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Inference

W"(wblue, W,q)

w., %

Blue or Red Socks Without Holes
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Inference

9 - (Wsocks, gv(wblue, wred)/

M"(Wblue, Wred)
wsocks

Blue or Red Socks Without Holes
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M"(Wblue, Wred)
wsocks

Blue or Red Socks Without Holes
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Inference

9 - (Wsocks, gv(wblue, wred)/

M"(Wblue, Wred)
wsocks

Blue or Red Socks Without Holes
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Inference

9 - (Wsocks, gv(wblue, wred)/

M"(Wblue, Wred)
Wocks W, oles

Blue or Red Socks Without Holes
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Inference

Blue or Red Socks Without Holes
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Inference

gA(gA(Wsocks, gv(wblue, wred))l gnOt(wholes))

Blue or Red Socks Without Holes
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Inference

gA(gA(Wsocks, gv(wblue, wred))l gnOt(wholes))

Blue or Red Socks Without Holes

f(e) = gA(gA(wsocks, gv(wblue, wred))l gnOt(wholes))
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Inference

gA(gA(Wsocks, gv(wblue, wred))l gnOt(wholes))

Blue or Red Socks Without Holes

f(e) = gA(gA(wsocks, gv(wblue, wred))l gnOt(wholes))
= w,€ERP
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Inference

gA(gA(Wsocks, gv(wblue, wred))l gnOt(wholes))

Blue or Red Socks Without Holes

A “
.\‘
N
. RN V
\0
‘\, \
NS \

f(e) = gA(gA(wsocks, gv(wblue, wred))l gnOt(wholes)) I:>

= w,€ERP

A\ 4
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Simplifying ...

We model our function as a set of composition functions and simplify them using
simple analytical relations and De Morgan’s laws.

gy (we,wy) = Neural Network(w,, wp)

g (w)

g\/ (wav wb)

9" (9" (g7 (wa) , g™ (ws)))

156



Experiments - Binary Expressions
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Experiments - Binary Expressions

Table 1. Evaluating knowm’un_nd conjunctive expressions on the C_t.

Metrics MAP AUC EER | MAP AUC EER | MAP AUC EER | MAP AUC EER
Chance 3970 50.00 50.0 | 40.60 50.00 500 | 455 50.0 500 | 459 500 500
Supervised 6525 74776 31.58 22.87 78.02 29.69

Independent 5873 6839 36.76 | 60.66 69.28 36.10 | 17.23 7722 2994 | 19.16 78.00 29.28
Neural Alg. Classifiers | 70.10 77.36 29.44 | 71.18 77.76 29.04 | 23.09 81.54 26.36 | 23.87 81.98 25.85

Table 2. Evaluating known/unknown disjunctive and conjunctive expressions on the AwA2 dataset.

Disjunctive Expressions Conjunctive Expressions
Known Exp. Unknown Exp. Known Exp. Unknown Exp.
Metrics MAP AUC EER | MAP AUC EER | MAP AUC EER | MAP AUC EER
Chance 53.19 500 500 | 53.04 500 500 | 18.77 50.0 50.0 | 21.17 500 50.0
Supervised 9747 9720 8.13 - - - 9490 98.53 6.00 - - -
Independent 9728 97.12 870 | 97.86 97.58 6.77 | 93.95 98.13 6.80 | 93.90 97.87 7.36
Neural Alg. Classifiers | 98.84 98.67 5.84 | 99.05 9891 524 | 9595 98.79 529 | 9650 98.81 5.34
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Experiments - Complex Expressions - CUB200

Complex Unknown Expressions in Conjunctive Normal Form (CNF):
P, Va)APE,Va)A....(P: vV Q)

0.7 *\ —§- Chance 0.501 0------.----—-0—---_‘ _____ ¢
I N L =& Independent 0.481
.§ 0.61 \\\‘\ == Neural Alg. Cls. ] —§- Chance
S ] ‘\ \\\\ g 0467 =& Independent
& 0.51 \\ S % o 0.441 == Neural Alg. Cls.
- N \X.\'\ S 421
g 0.4 \\ \'\\\\‘ Ll_‘j . -
> (8] g - - -~
:20.3 *"\‘. "\Z"s‘_ 3.0'40; ‘--""'-* ‘—-—-._‘
5 Seal TSI " 038
= 0.2 b ol T . 0.36 e s T e T e s
Sso ] ‘__—-"‘"
o1 ..-_-_-’ 0341 %
2 4 6 8 10 2 4 6 8 10
Complexity Complexity
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Experiments - Complex Expressions - AWA2

1.0
]
:‘.‘-' -*I---_-*———
g ""-._-—‘—-___‘
‘5 0.81
2 E
v 0.7
o ]
u ] —$- Chance
g 0 =4 Independent
§0-5§ *'~,~ =f= Neural Alg. Cls.
< ] N
< 0.4 So
U ] \".
T o3 TNy
2] i o

Complexity

Equal Error Rate

o
(N}

0.5

o
=~

o
w

—4- Chance

=& Independent

== Neural Alg. Cls.

k—-——-‘ ----- ‘ _____ ‘___-_
2 4 6 8
Complexity
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Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )
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Birds with crown and breast of different color (e.g., blue, yellow, or red. )
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Qualitative Experiments

Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

(RB AND RC) OR (BB AND BC) OR (YB AND YC)
TP

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)
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Qualitative Experiments

Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

(RB AND RC) OR (BB AND BC) OR (YB AND YC)

TN

Se [0 I D

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)
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Qualitative Experiments

Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

(RB AND RC) OR (BB AND BC) OR (YB AND YC)
LI‘ ’
Neo? ‘ A

FP: . FN: TN: i
S 21 I 5 D
Birds with crown and breast of different color (e.g., blue, yellow, or red. )

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)
..--._ .ﬂ !En -... E : P ‘., n.

Big and fast animals that are not hunters: (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)
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Qualitative Experiments

Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

(RB AND RC) OR (BB AND BC) OR (YB AND YC)

TN

FP: . FN: TN: i
> [0 I RN I R R N B
Birds with crown and breast of different color (e.g., blue, yellow, or red. )
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¥ .ﬂ !En ... E : P ‘., n.

Big and fast animals that are not hunters: (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)
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" ’ et b —, P )
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Qualitative Experiments

Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

(RB AND RC) OR (BB AND BC) OR (YB AND YC)

TN

FP: . FN: TN: i
> [0 I RN I R R N B
Birds with crown and breast of different color (e.g., blue, yellow, or red. )

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)
¥ .ﬂ !En ... E : P ‘., n.

Big and fast animals that are not hunters: (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)
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Extending EXxisting
Models

[Inferring Rich Compositional Activities in Videos. Rodrigo Santa Cruz, Dylan Campbell, Basura Fernando, Anoop Cherian,
Stephen Gould. In IEEE international conference on computer vision (ICCV), 2019. (Under Review)]
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The long tail of complex activities
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The long tail of complex activities

Traditional Action Recognition

# Samples

running i Cooking
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The long tail of complex activities

Traditional Action Recognition

Complex Activities
E—, w1 Z

\ L
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Caesar Salad

# Samples

running i Cooking

Olympic Goal
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The long tail of complex activities

Traditional Action Recognition

Complex Act|V|t|es

# Samples

running i Cooking

Caesar Salad Olympic Goal

Language Models

)

# Classes 175



Activity Recognition from Natural Language

Someone . ..

“. . .is talking on the phone, dressing a
jacket and brushing hair.”

“. . .lIs talking on the phone and holding
a jacket, then he dresses it and brushes
his hair.”

“. . . Is talking on the phone while
dressing a jacket and brushing hair.”
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities
expressed as regular expressions of simpler actions.
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities
expressed as regular expressions of simpler actions.

Simple actions:
TP = talks on the phone;
D = Dressing; BH = Brushing Hair;
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities
expressed as regular expressions of simpler actions.

Simple actions:
TP = talks on the phone;
D = Dressing; BH = Brushing Hair;

(TP, H)(TP, D)(TP, BH)
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities
expressed as regular expressions of simpler actions.

Simple actions:
TP = talks on the phone;
D = Dressing; BH = Brushing Hair;

(TP, H)(TP, D)(TP, BH)
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities
expressed as regular expressions of simpler actions.

Simple actions:
TP = talks on the phone;
D = Dressing; BH = Brushing Hair;

(TP, HO)(TP, D)(TP,BH) [ > /-
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities
expressed as regular expressions of simpler actions.

Simple actions:
TP = talks on the phone;
D = Dressing; BH = Brushing Hair;

(TP, HO)(TP, D)(TP,BH) [ > /-

It allows to recognize new, specific instances, and groups of activities without
additional annotation effort in a unambiguously fashion.
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Problem Formulation
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Problem Formulation

Describe complex activities by regular expressions of subset of primitive actions (symbols):
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Problem Formulation

Describe complex activities by regular expressions of subset of primitive actions (symbols):

{Regex Operators !

weP(A)i '0—{>|*}'

o e e e e o o o o=

A = {a,' j-\fl/:
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Problem Formulation

Describe complex activities by regular expressions of subset of primitive actions (symbols):

{Regex Operators !

\I
_ M I S tial
A={all ) weP(A)) 0=} oo
Recursive
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Problem Formulation

Describe complex activities by regular expressions of subset of primitive actions (symbols):

| Primitives | { Symbols Regex Operators ' < il
'A = {ag M l ! L) — N equentia
- { “Hi=1) w e P_ QA) ' ~(_9_ ~ _{_> g } Alternative

Recursive

Ex: “driving (a,) and talking on the phone (a,.) or to someone (a,) repeatedly just after he got
in the car (a,,)"
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Problem Formulation

Describe complex activities by regular expressions of subset of primitive actions (symbols):

[ Primitives | " Symbols | Regex Operators ' < il
' A = {g M ! : ' L) — N equentia
- { =) w < P_ QA) . ~(_9_ _ _{_> g } Alternative

Recursive

Ex: “driving (a,) and talking on the phone (a,.) or to someone (a,) repeatedly just after he got

in the car (a,,)" | "
Agc > ({adl atc} ‘ {ad; ats})
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Problem Formulation

Describe complex activities by regular expressions of subset of primitive actions (symbols):

| Primitives | { Symbols Regex Operators ' < il
'A = {ag M l ! L) — N equentia
- { “Hi=1) w e P_ g“_él_) ' ~(_9_ ~ _{_> g } Alternative

Recursive

Ex: “driving (a,) and talking on the phone (a,.) or to someone (a,) repeatedly just after he got

in the car (a,,)" | "
Agc > ({adl atc} ‘ {ad; ats})

Then, our goal is to model a function f that assigns high values to a video v if it depicts the action pattern
described by the regular expression r and low values otherwise.

fr:V —|0,1]
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Deterministic Baseline

1. Compile a deterministic finite automaton (DFA) to recognise a given action
pattern;

2. Parse video to a subset of action primitives w(x) by thresholding primitive
action classifiers at every frame x;

w(x) ={aec A|plalx) > 1}

3. Simulate the DFA with the parsed video;

V = [{agc}1 {ad’a‘[c}’ {ad’atc}’ {ad’atc} e ]

4. Compute the score function.

dist(qo,q)
r\0) = —2 " : : -
fr(v) dist(qo,q) + ming c 7 dist (q,b}'f)
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Probabilistic Inference - 1/2

1. Compile the regular expression to a probabilistic automaton (PA) as follow,

oG w) =jl+«
Y [6(,w) =kl +a|Q|’
keQ
b — [0 =i +«
Y o=kl +«|Q|]

keQ
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Probabilistic Inference - 2/2

2. Define an distribution over the power set of action primitives 2

Y
(ZU‘JC (H p ‘x HQEZU]] ( (ax))(lllaew]]))

ac A
3. We compute the matching probability;

1

0| o
Py, (v (P HZT wxl)) f

i=1weX
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Experiments - Moving MNIST

We generate videos with different digits appearing patterns expressed by regular
expressions of the format,

+ 1+ 1+ d+ d+
where the symbols w are subsets of the primitives which are the 10 digit classes.

Data generation parameters:

e n: number of sequential patterns ?"
e d: number of alternatives @
e s alternatives start position (

|w|: number of digits appearing simultaneously

e Total number of generated frames
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Area Under the ROC Curve (AUC)

Mean Average Precision (MAP)

Experiments - Moving MNIST
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Experiments - Activity Recognition - MultiTHUMOS

MultiTHUMOS
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Experiments - Activity Recognition - Charades

Charades
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Experiments - Qualitative Results

{Jump} ™ = {Body-Roll}" = {Body-Bend}*  {WaThDo}" = {WaThDo, OpDo}* ~ {WaThDo, ClDo}"
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Experiments - Qualitative Results - Failures

{Stand} ' = {Stand, Throw!}" = {Stand, Golf-Swing}* {WaThDo, OpDo, GaOnDoKn, HoBa}"
= {WaThDo, ClDo, GaOnDoKn, HoBa}Jr
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Conclusion



This thesis...
o ... focuses on reducing the exhaustive human supervision required by
the current state-of-the-art models for visual recognition.
O ... presents approaches to overcome the closed world assumption of
existing models.
o ... accomplishes its goals by exploring the structure and regularities in
the visual world.
o Applications:
B |mage Ranking.
m  Self-Supervised Representation Learning.
m  Compositional Model for Object Classification.
|

Activity Recognition from Regular Expressions of Primitives.

Future Work:
o Visual Permutation Learning Beyond Static Images.
o Compositional Models Beyond Classification.

o Modelling Action Correlation, Co-occurrences and Contextuality. -
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