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Structured Supervision

In this thesis, we propose methods that reduce the need for extensive human 
supervision by leveraging the structure in the visual world.

● Structure In The Outputs
● Structure In The Inputs
● Structure In The Models
● Leveraging Existing Models



Structure In the 
outputs
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[DeepPermNet: Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen 
Gould. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]

[Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. Pattern 
Analysis and Machine Intelligence (PAMI), 2018.]

[On differentiating parameterized argmin and argmax problems with application to bi-level optimization.Stephen 
Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, Edison Guo. arXiv preprint 
arXiv:1607.05447, 2016.]



Visual Labels are structured ...

22

?
?



Image Ranking and Its Applications

23



Image Ranking and Its Applications

24



Image Ranking and Its Applications

25



Image Ranking and Its Applications

26



Image Ranking and Its Applications

27



Image Ranking Applications

28

Ranked List

Product Search Applications Pearson Re-Identification



Image Ranking Applications

29

Ranked List

Product Search Applications Pearson Re-Identification

• Tasks in other fields can be reduced to this problem:
– Computer graphics: Jigsaw puzzle
– Biology: DNA and RNA modeling
– Archeology: Re-assembling relics

• Archeology: Re-assembling relics
• Computer Vision: Representation learning.
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Visual Permutation Learning - Learning

Let us define a training set,

We propose to learn a function that maps from fixed length image sequence to 
permutation matrices. Then our permutation learning problem can be described 
as,
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Geometry of Permutation Matrices

Then, we propose to approximate inference 
over permutation matrices to inference over 
their nearest convex-surrogate, the doubly 
stochastic matrices.
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Image Sequences doubly stochastic matricesLearnable function
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Sinkhorn Layer

Sinkhorn's theorem: Any non-negative square matrix can be converted to a DSM 
by alternating between re-scaling its rows and columns to one.

Gradient (Row normalization):

41

Row 
normalization

Column 
normalization



Bi-level Optimization
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Bi-level Optimization
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Bi-level Optimization

We refer to “On differentiating parameterized argmin and argmax problems with application to bi-level 
optimization” by Gould et al. for a detailed explanation about computing gradients of argmin functions.
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2 - Permuting the shuffled image sequence by 
the inverse permutation

Visual Permutation Learning - Inference

1 - Solving a approximation problem (or argmax 
rows/cols)
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We can recover the correctly ordered sequence from a permuted sequence by,



Visual Permutation Learning - Recap

● Given a set of ordered images Sc according to c, we build a data set D as,

● Using D, we learn a function (CNN) which maps shuffled image sequences to 
its DSM matrix employing the sinkhorn layer or bi-level optimization.

● During test time, we receive a shuffled image sequence and reorder it 
according to c by doing,
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Experiments - Permutation Prediction

Unpermute 20K shuffled sequences:
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Sorting Long Sequences - Smiling



Permutation prediction + Sorting Algorithm
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Experiments - Learning to Rank



Structure In The Inputs
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[DeepPermNet: Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]

[Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. Pattern Analysis and 
Machine Intelligence (PAMI), 2018]
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Self-Supervised Representation Learning

87

We hypothesize that the model trained to solve such task is able to capture high-
level semantic concepts, structure and shared patterns in visual data.



● Pretrain in the visual permutation learning:

● Finetune on the target task:

Visual Permutation Learning
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CNN

CNN

CNN

CNN

CNN
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Avoiding “Shortcuts”

1. Randomly crop a squared region of 
the image;

2. Split the resized crop into a 3 × 3 
grid cell;

3. Randomly select 64 × 64 pixels 
tiles from each cell;

Others: Low level statistics and 
Chromatic Aberration.



Existing Self-Supervised Learning Methods
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[Doersch et al., ICCV 2015]
[Zhang et al., ECCV16]

[Fernando et al., ECCV16]
[Gidaris, et al., ICLR 2018]
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Structure In The 
Models

[Neural Algebra of Classifiers. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE Winter 
Conference on Applications of Computer Vision (WACV), 2018.]
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Albatross Frigatebird

Which one is an albatross?

Frigatebirds seem black albatrosses with white or red pouch.
Which one is a frigatebird? 

The human recognition system is fundamentally compositional, so 
unseen visual complex concepts are recognized from the composition 
of simple visual primitives according to well-defined rules.

Albatrosses are birds with hooked beak and large wingspan. 

Compositional Model

104
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We represent primitives by the parameters of one-vs-all SVM classifiers trained on 
positives and negatives images of the primitives.

Model
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We represent images in a feature space, e.g., CNN features.

Model
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We model our function as a set of composition functions and simplify them using 
simple analytical relations and De Morgan’s laws.

Model
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We parse the expression tree applying the composition functions recursively. 

Model
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We score images according to the “predicted classifier” for a given expressions.

Model
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We minimize the classification loss of batches of positive and negative images for 
different training expressions.

Model
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gnot(•): RD → RD

gv(•, •): RD x RD → RD

g^(•, •):  RD x RD → RD

f(e) = g^(g^(wsocks, gv(wblue, wred)), gnot(wholes)) 
       = we Є RD

w e

Inference
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We model our function as a set of composition functions and simplify them using 
simple analytical relations and De Morgan’s laws.

Simplifying ...
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Experiments - Binary Expressions
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a AND ba OR b

Experiments - Binary Expressions
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a AND ba OR b

Known Unknow Known Unknow

Experiments - Binary Expressions
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a AND ba OR b

Known Unknow Known Unknow

Experiments - Binary Expressions
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Complex Unknown Expressions in Conjunctive Normal Form (CNF): 
(p1  q∨ 1 )  (p∧ 2  q∨ 2 )  …. (p∧ c  q∨ c )

Experiments - Complex Expressions - CUB200
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Experiments - Complex Expressions - AWA2
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Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

Big and fast animals that are not hunters:  (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)

Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

Big and fast animals that are not hunters:  (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)

Qualitative Experiments
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Birds with crown and breast of the same color (e.g., blue, yellow, or red. )

Birds with crown and breast of different color (e.g., blue, yellow, or red. )

Big and fast animals that are not hunters:  (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)

Qualitative Experiments
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Extending Existing 
Models

171

[Inferring Rich Compositional Activities in Videos. Rodrigo Santa Cruz, Dylan Campbell, Basura Fernando, Anoop Cherian, 
Stephen Gould. In IEEE international conference on computer vision (ICCV), 2019. (Under Review)]
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The long tail of complex activities
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The long tail of complex activities
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The long tail of complex activities
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Traditional Action Recognition

Running Cooking

Complex Activities

Caesar Salad Olympic Goal

Language Models
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Activity Recognition from Natural Language

Someone . . .

“. . . is talking on the phone, dressing a 
jacket and brushing hair.”

“ . . . is talking on the phone and holding 
a jacket, then he dresses it and brushes 
his hair.”

“. . . is talking on the phone while 
dressing a jacket and brushing hair.”
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities 
expressed as regular expressions of simpler actions. 
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Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities 
expressed as regular expressions of simpler actions. 
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Simple actions:
TP = talks on the phone;  HJ = Holding a jacket; 
D = Dressing;  BH = Brushing Hair;
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We propose inference framework which can recognize complex activities 
expressed as regular expressions of simpler actions. 
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Simple actions:
TP = talks on the phone;  HJ = Holding a jacket; 
D = Dressing;  BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)
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We propose inference framework which can recognize complex activities 
expressed as regular expressions of simpler actions. 
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Simple actions:
TP = talks on the phone;  HJ = Holding a jacket; 
D = Dressing;  BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)



Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities 
expressed as regular expressions of simpler actions. 
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Simple actions:
TP = talks on the phone;  HJ = Holding a jacket; 
D = Dressing;  BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)



Rich Compositional Activity Recognition

We propose inference framework which can recognize complex activities 
expressed as regular expressions of simpler actions. 

182

It allows to recognize new, specific instances, and groups of activities without 
additional annotation effort in a unambiguously fashion. 

Simple actions:
TP = talks on the phone;  HJ = Holding a jacket; 
D = Dressing;  BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)



Problem Formulation
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Problem Formulation
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Describe complex activities by regular expressions of subset of primitive actions (symbols): 
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Describe complex activities by regular expressions of subset of primitive actions (symbols): 

Primitives Symbols Regex Operators
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Alternative
Recursive



Problem Formulation
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Describe complex activities by regular expressions of subset of primitive actions (symbols): 

Primitives Symbols Regex Operators

Ex: “driving (ad) and talking on the phone (atc) or to someone (ats) repeatedly just after he got 
in the car (agc)”

Sequential
Alternative
Recursive



Problem Formulation
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Describe complex activities by regular expressions of subset of primitive actions (symbols): 

Primitives Symbols Regex Operators

Ex: “driving (ad) and talking on the phone (atc) or to someone (ats) repeatedly just after he got 
in the car (agc)”

Sequential
Alternative
Recursive



Problem Formulation

189

Describe complex activities by regular expressions of subset of primitive actions (symbols): 

Then, our goal is to model a function f that assigns high values to a video v if it depicts the action pattern 
described by the regular expression r and low values otherwise.

Primitives Symbols Regex Operators

Ex: “driving (ad) and talking on the phone (atc) or to someone (ats) repeatedly just after he got 
in the car (agc)”

Sequential
Alternative
Recursive



Deterministic Baseline

1. Compile a deterministic finite automaton (DFA) to recognise a given action 
pattern;

2. Parse video to a subset of action primitives w(x) by thresholding primitive 
action classifiers at every frame x;

3. Simulate the DFA with the parsed video;

4. Compute the score function.

190

V = [{agc}, {ad,atc}, {ad,atc}, {ad,atc} . . . ]



Probabilistic Inference - 1/2

1. Compile the regular expression to a probabilistic automaton (PA) as follow,
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Probabilistic Inference - 2/2

2.  Define an distribution over the power set of action primitives Σ;

3.  We compute the matching probability;
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Experiments - Moving MNIST

We generate videos with different digits appearing patterns expressed by regular 
expressions of the format,

where the symbols w are subsets of the primitives which are the 10 digit classes.

Data generation parameters:

● n: number of sequential patterns

● d: number of alternatives

● s: alternatives start position

● |w|: number of digits appearing simultaneously

● Total number of generated frames
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Experiments - Moving MNIST
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Experiments - Activity Recognition - MultiTHUMOS
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Experiments - Activity Recognition - Charades
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Experiments - Qualitative Results
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Experiments - Qualitative Results - Failures
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Conclusion
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200

● This thesis...
○ … focuses on reducing the exhaustive human supervision required by 

the current state-of-the-art models for visual recognition. 
○ … presents approaches to overcome the closed world assumption of 

existing models.
○ … accomplishes its goals by exploring the structure and regularities in 

the visual world.
○ Applications:

■ Image Ranking.
■ Self-Supervised Representation Learning.
■ Compositional Model for Object Classification.
■ Activity Recognition from Regular Expressions of Primitives.

● Future Work:
○ Visual Permutation Learning Beyond Static Images.
○ Compositional Models Beyond Classification.
○ Modelling Action Correlation, Co-occurrences and Contextuality. 



Visual Recognition From 
Structured Supervision
Rodrigo Santa Cruz and Stephen Gould
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