

Visual Recognition From Structured Supervision

Rodrigo Santa Cruz and Stephen Gould

Visual Recognition

"Is the way to solve visual recognition to collect data for all the things we want to recognise?"

- 14M Images
- 22K Visual Concepts
- <u>10 years</u>

- 14M Images
- 22K Visual Concepts
- <u>10 years</u>

- [Biederman et al., 1987]
 - 30K Nouns (1.4x)

- 14M Images
- 22K Visual Concepts
- <u>10 years</u>

- [Biederman et al., 1987]
 - 30K Nouns (1.4x)

- [George A. Miller, 1995]
 - Lexical database of English
 - 175 979 Synset (8x)

- 14M Images
- 22K Visual Concepts
- <u>10 years</u>

- [Biederman et al., 1987]
 - 30K Nouns (1.4x)

- [George A. Miller, 1995]
 - Lexical database of English
 - 175 979 Synset (8x)

[Facebook Inc., 2013]

• 300M images/day (21x)

- 14M Images
- 22K Visual Concepts
- <u>10 years</u>

30K Nouns (1.4x)

[George A. Miller, 1995]

- Lexical database of English
- 175 979 Synset (8x)

[Facebook Inc., 2013]

• 300M images/day (21x)

[Bart Thomee et al., 2015] 8M visual concepts on the web (360x)

Structured Supervision

In this thesis, we propose methods that reduce the need for extensive human supervision by leveraging the structure in the visual world.

- Structure In The Outputs
- Structure In The Inputs
- Structure In The Models
- Leveraging Existing Models

Structure In the outputs

[On differentiating parameterized argmin and argmax problems with application to bi-level optimization.Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, **Rodrigo Santa Cruz**, Edison Guo. arXiv preprint arXiv:1607.05447, 2016.]

[DeepPermNet: Visual Permutation Learning. **Rodrigo Santa Cruz**, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]

[Visual Permutation Learning. **Rodrigo Santa Cruz**, Basura Fernando, Anoop Cherian, Stephen Gould. Pattern Analysis and Machine Intelligence (PAMI), 2018.]

Visual Labels are structured ...

Subject: Smiling

Subject: Narrow Eyes

Image Ranking Applications

Image Ranking Applications

- Tasks in other fields can be reduced to this problem:
 - Computer graphics: Jigsaw puzzle
 - Biology: DNA and RNA modeling
 - Archeology: Re-assembling relics

- Archeology: Re-assembling relics
- Computer Vision: Representation learning.

Visual Permutation Learning - Task

Ground-truth Sequence X

Permuted Sequence \widetilde{X}

Visual Permutation Learning - Task

Ground-truth Sequence X

Visual Permutation Learning - Task

Ground-truth Sequence X

Visual Permutation Learning - Learning

Let us define a training set,

$$\mathcal{D} = \{ (X, P) \mid X \in \mathcal{S}^c \text{ and } \forall P \in \mathcal{P}^l \}$$

We propose to learn a function that maps from fixed length image sequence to permutation matrices. Then our permutation learning problem can be described as,

$$\underset{\theta}{\text{minimize}} \quad \sum_{(X,P)\in\mathcal{D}} \Delta\left(P, f_{\theta}(\tilde{X})\right) + R\left(\theta\right)$$

Geometry of Permutation Matrices

Then, we propose to approximate inference over permutation matrices to inference over their nearest convex-surrogate, the doubly stochastic matrices.

Learnable function

Image Sequences

doubly stochastic matrices


```
DeepPermNet - Model
```


```
DeepPermNet - Model
```


Sinkhorn Layer

Sinkhorn's theorem: Any non-negative square matrix can be converted to a DSM by alternating between re-scaling its rows and columns to one.

$$\begin{array}{l} \operatorname{Row} \\ \operatorname{normalization} & R_{i,j}\left(Q\right) = \frac{Q_{i,j}}{\sum_{k=1}^{l}Q_{i,k}}; \quad C_{i,j}\left(Q\right) = \frac{Q_{i,j}}{\sum_{k=1}^{l}Q_{k,j}} \quad \begin{array}{l} \operatorname{Column} \\ \operatorname{normalization} \\ \\ S^{n}(Q) = \begin{cases} Q, & \text{if } n = 0 \\ C\left(R\left(S^{n-1}\left(Q\right)\right)\right), & \text{otherwise.} \end{cases} \end{array}$$

Gradient (Row normalization):

$$\frac{\partial \Delta}{\partial Q_{p,q}} = \sum_{j=1}^{l} \frac{\partial \Delta}{\partial R_{p,j}} \left[\frac{\llbracket j = q \rrbracket}{\sum_{k=1}^{l} Q_{p,k}} - \frac{Q_{p,j}}{\left(\sum_{k=1}^{l} Q_{p,k}\right)^2} \right]$$

$$\begin{array}{ll} \underset{\theta}{\text{minimize}} & \sum_{(X,P)\in\mathcal{D}} \Delta\left(P,\hat{Q}\right) + R\left(\theta\right) \\ \text{subject to} & \hat{Q} \in \underset{\hat{Q} \in \mathbb{R}^{n \times n}_{+}}{\text{subject to}} & \left\|\hat{Q} - f_{\theta}(\tilde{X})\right\| \\ & \text{subject to} & \hat{Q} \mathbf{1} = \mathbf{1} \\ & \hat{Q}^{T} \mathbf{1} = \mathbf{1} \end{array}$$

$$\begin{array}{ll} \underset{\theta}{\text{minimize}} & \sum_{(X,P)\in\mathcal{D}} \Delta\left(P,\hat{Q}\right) + R\left(\theta\right) \\ \text{subject to} & \hat{Q} \in \underset{\varphi}{\operatorname{argmin}} & \left\|\hat{Q} - f_{\theta}(\tilde{X})\right\| & \text{fc8} \xrightarrow{16} \xrightarrow{4\times4} & \left[\begin{smallmatrix} \mathsf{P} & \mathsf{Q} \\ \overbrace{0000}} \\ \overbrace{0001} \\ \overbrace{0001} \\ \overbrace{0001} \\ \overbrace{0000} \\ \overbrace{000} \\ \overbrace{0000} \\ \overbrace{000} \\ I$$

$$\begin{array}{ll} \underset{\theta}{\text{minimize}} & \sum_{\substack{(X,P)\in\mathcal{D}\\ \hat{Q}\in \text{argmin}\\ \hat{Q}\in \mathbb{R}^{n\times n}_{+}} & \left\|\hat{Q}-f_{\theta}(\tilde{X})\right\| & \text{fc8} \xrightarrow{16} & 4\times 4 \\ & \text{subject to} & \hat{Q}\mathbf{1}=\mathbf{1}\\ & \hat{Q}^{T}\mathbf{1}=\mathbf{1} \end{array}$$

We refer to "On differentiating parameterized argmin and argmax problems with application to bi-level optimization" by Gould et al. for a detailed explanation about computing gradients of argmin functions.

Visual Permutation Learning - Inference

We can recover the correctly ordered sequence from a permuted sequence by,

1 - Solving a approximation problem (or argmax rows/cols)

2 - Permuting the shuffled image sequence by the inverse permutation

$$\hat{P} \in \underset{\hat{P}}{\operatorname{argmin}} \quad \left\| \hat{P} - Q \right\|_{F}$$
subject to
$$\hat{P} \cdot \mathbf{1} = \mathbf{1}$$

$$\mathbf{1}^{T} \cdot \hat{P} = \mathbf{1}$$

$$\hat{P} \in \{0, 1\}^{l \times l}$$

$$X = \hat{P}^T \tilde{X}$$

Visual Permutation Learning - Recap

• Given a set of ordered images Sc according to c, we build a data set D as,

$$\mathcal{D} = \{ (X, P) \mid X \in \mathcal{S}^c \text{ and } \forall P \in \mathcal{P}^l \}$$

• Using D, we learn a function (CNN) which maps shuffled image sequences to its DSM matrix employing the sinkhorn layer or bi-level optimization.

$$f_ heta$$
 : \mathcal{S}^c $ightarrow$ \mathcal{B}^l

• During test time, we receive a shuffled image sequence and reorder it according to c by doing,

$$\tilde{X} \to f_{\theta}(\cdot) \to \text{Infer P} \to X = P^T \tilde{X}$$

Experiments - Permutation Prediction

Unpermute 20K shuffled sequences:

Experiments - Permutation Prediction

Unpermute 20K shuffled sequences:

Experiments - Permutation Prediction

Unpermute 20K shuffled sequences:

TABLE 1

Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.

Method	Lips	Eyebrows	Chubby	Male	Eyes	Nose	Face	Smiling	Forehead	White	Young	Mean
Parikh and Grauman [59]	79.17	79.87	76.27	81.80	81.67	77.40	82.33	79.90	87.60	76.97	83.20	80.56
Li et al. [46]	81.87	81.84	79.97	85.33	83.15	80.43	86.31	83.36	88.83	82.59	84.41	83.37
Yu and Grauman [82]	90.43	89.83	87.37	91.77	91.40	89.07	86.70	87.00	94.00	87.43	91.87	89.72
Souri et al. [71]	93.62	94.53	92.32	95.50	93.19	94.24	94.76	95.36	97.28	94.60	94.33	94.52
DeepPermNet (Sinkhorn Norm.)	99.55	97.21	97.66	99.44	96.54	96.21	99.11	97.88	99.00	97.99	99.00	98.14
DeepPermNet (Bi-level Opt.)	99.53	96.65	98.54	98.99	97.21	94.72	99.44	98.55	98.77	95.66	98.77	97.89

TABLE 2

Method	Depth-Close	Diagonal-Plane	Natural	Open	Perspective	Size-Large	Mean
Parikh and Grauman [59]	87.53	86.5	95.03	90.77	86.73	86.23	88.80
Li et al. [46]	89.54	89.34	95.24	92.39	87.58	88.34	90.41
Yu and Grauman [82]	90.47	92.43	95.7	94.1	90.43	91.1	92.37
Singh and Lee [69]	96.1	97.64	98.89	97.2	96.31	95.98	97.02
Souri et al. [71]	97.65	98.43	99.4	97.44	96.88	96.79	97.77
DeepPermNet (Sinkhorn Norm.)	96.09	94.53	97.21	96.65	96.46	98.77	96.62
DeepPermNet (Bi-level Opt.)	97.99	98.21	97.76	97.10	97.21	96.65	97.49
DeepPermNet (Sinkhorn Norm. + VGG16)	96.87	97.99	96.87	99.79	99.82	99.55	98.48
DeepPermNet (Bi-level Opt. + VGG16)	98.12	99.92	98.13	97.78	98.72	97.87	98.42

TABLE 1

Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.

Method	Lips	Eyebrows	Chubby	Male	Eyes	Nose	Face	Smiling	Forehead	White	Young	Mean
Parikh and Grauman [59]	79.17	79.87	76.27	81.80	81.67	77.40	82.33	79.90	87.60	76.97	83.20	80.56
Li et al. [46]	81.87	81.84	79.97	85.33	83.15	80.43	86.31	83.36	88.83	82.59	84.41	83.37
Yu and Grauman [82]	90.43	89.83	87.37	91.77	91.40	89.07	86.70	87.00	94.00	87.43	91.87	89.72
Souri et al. [71] VGG	93.62	94.53	92.32	95.50	93.19	94.24	94.76	95.36	97.28	94.60	94.33	94.52
DeepPermNet (Sinkhorn Norm.)	99.55	97.21	97.66	99.44	96.54	96.21	99.11	97.88	99.00	97.99	99.00	98.14
DeepPermNet (Bi-level Opt.)	99.53	96.65	98.54	98.99	97.21	94.72	99.44	98.55	98.77	95.66	98.77	97.89

TABLE 2

Method	Depth-Close	Diagonal-Plane	Natural	Open	Perspective	Size-Large	Mean
Parikh and Grauman [59]	87.53	86.5	95.03	90.77	86.73	86.23	88.80
Li et al. [46]	89.54	89.34	95.24	92.39	87.58	88.34	90.41
Yu and Grauman [82]	90.47	92.43	95.7	94.1	90.43	91.1	92.37
Singh and Lee [69]	96.1	97.64	98.89	97.2	96.31	95.98	97.02
Souri et al. [71]	97.65	98.43	99.4	97.44	96.88	96.79	97.77
DeepPermNet (Sinkhorn Norm.)	96.09	94.53	97.21	96.65	96.46	98.77	96.62
DeepPermNet (Bi-level Opt.)	97.99	98.21	97.76	97.10	97.21	96.65	97.49
DeepPermNet (Sinkhorn Norm. + VGG16)	96.87	97.99	96.87	99.79	99.82	99.55	98.48
DeepPermNet (Bi-level Opt. + VGG16)	98.12	99.92	98.13	97.78	98.72	97.87	98.42

TABLE 1

Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.

Method	Lips	Eyebrows	Chubby	Male	Eyes	Nose	Face	Smiling	Forehead	White	Young	Mean
Parikh and Grauman [59]	79.17	79.87	76.27	81.80	81.67	77.40	82.33	79.90	87.60	76.97	83.20	80.56
Li et al. [46]	81.87	81.84	79.97	85.33	83.15	80.43	86.31	83.36	88.83	82.59	84.41	83.37
Yu and Grauman [82]	90.43	89.83	87.37	91.77	91.40	89.07	86.70	87.00	94.00	87.43	91.87	89.72
Souri et al. [71] VGG	93.62	94.53	92.32	95.50	93.19	94.24	94.76	95.36	97.28	94.60	94.33	94.52
DeepPermNet (Sinkhorn Norm.)	99.55	97.21	97.66	99.44	96.54	96.21	99.11	97.88	99.00	97.99	99.00	98.14
DeepPermNet (Bi-level Opt.)	99.53	96.65	98.54	98.99	97.21	94.72	99.44	98.55	98.77	95.66	98.77	97.89

TABLE 2

Method	Depth-Close	Diagonal-Plane	Natural	Open	Perspective	Size-Large	Mean
Parikh and Grauman [59]	87.53	86.5	95.03	90.77	86.73	86.23	88.80
Li et al. [46]	89.54	89.34	95.24	92.39	87.58	88.34	90.41
Yu and Grauman [82]	90.47	92.43	95.7	94.1	90.43	91.1	92.37
Singh and Lee [69]	96.1	97.64	98.89	97.2	96.31	95.98	97.02
Souri et al. [71]	97.65	98.43	99.4	97.44	96.88	96.79	97.77
DeepPermNet (Sinkhorn Norm.)	96.09	94.53	97.21	96.65	96.46	98.77	96.62
DeepPermNet (Bi-level Opt.)	97.99	98.21	97.76	97.10	97.21	96.65	97.49
DeepPermNet (Sinkhorn Norm. + VGG16)	96.87	97.99	96.87	99.79	99.82	99.55	98.48
DeepPermNet (Bi-level Opt. + VGG16)	98.12	99.92	98.13	97.78	98.72	97.87	98.42

TABLE 1

Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.

Method	Lips	Eyebrows	Chubby	Male	Eyes	Nose	Face	Smiling	Forehead	White	Young	Mean
Parikh and Grauman [59]	79.17	79.87	76.27	81.80	81.67	77.40	82.33	79.90	87.60	76.97	83.20	80.56
Li et al. [46]	81.87	81.84	79.97	85.33	83.15	80.43	86.31	83.36	88.83	82.59	84.41	83.37
Yu and Grauman [82]	90.43	89.83	87.37	91.77	91.40	89.07	86.70	87.00	94.00	87.43	91.87	89.72
Souri et al. [71] VGG	93.62	94.53	92.32	95.50	93.19	94.24	94.76	95.36	97.28	94.60	94.33	94.52
DeepPermNet (Sinkhorn Norm.)	99.55	97.21	97.66	99.44	96.54	96.21	99.11	97.88	99.00	97.99	<u>99.00</u>	<u>98.14</u>
DeepPermNet (Bi-level Opt.)	99.53	96.65	98.54	98.99	97.21	94.72	99.44	98.55	98.77	95.66	98.77	97.89
$\Delta =$	5.93		7.22				4.68				4.67	3.62

TABLE 2

Method	Depth-Close	Diagonal-Plane	Natural	Open	Perspective	Size-Large	Mean
Parikh and Grauman [59]	87.53	86.5	95.03	90.77	86.73	86.23	88.80
Li et al. [46]	89.54	89.34	95.24	92.39	87.58	88.34	90.41
Yu and Grauman [82]	90.47	92.43	95.7	94.1	90.43	91.1	92.37
Singh and Lee [69]	96.1	97.64	98.89	97.2	96.31	95.98	97.02
Souri et al. [71]	97.65	98.43	99.4	97.44	96.88	96.79	97.77
DeepPermNet (Sinkhorn Norm.)	96.09	94.53	97.21	96.65	96.46	98.77	96.62
DeepPermNet (Bi-level Opt.)	97.99	98.21	97.76	97.10	97.21	96.65	97.49
DeepPermNet (Sinkhorn Norm. + VGG16)	96.87	97.99	96.87	99.79	99.82	99.55	98.48
DeepPermNet (Bi-level Opt. + VGG16)	98.12	99.92	98.13	97.78	98.72	97.87	98.42

TABLE 1

Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.

Method	Lips	Eyebrows	Chubby	Male	Eyes	Nose	Face	Smiling	Forehead	White	Young	Mean
Parikh and Grauman [59]	79.17	79.87	76.27	81.80	81.67	77.40	82.33	79.90	87.60	76.97	83.20	80.56
Li et al. [46]	81.87	81.84	79.97	85.33	83.15	80.43	86.31	83.36	88.83	82.59	84.41	83.37
Yu and Grauman [82]	90.43	89.83	87.37	91.77	91.40	89.07	86.70	87.00	94.00	87.43	91.87	89.72
Souri et al. [71] VGG	93.62	94.53	92.32	95.50	93.19	94.24	94.76	95.36	97.28	94.60	94.33	94.52
DeepPermNet (Sinkhorn Norm.)	99.55	97.21	97.66	99.44	96.54	96.21	99.11	97.88	99.00	97.99	<u>99.00</u>	<u>98.14</u>
DeepPermNet (Bi-level Opt.)	99.53	96.65	98.54	98.99	97.21	94.72	99.44	98.55	98.77	95.66	98.77	97.89
$\Delta =$	5.93		7.22				4.68				4.67	3.62

TABLE 2

Method	Depth-Close	Diagonal-Plane	Natural	Open	Perspective	Size-Large	Mean
Parikh and Grauman [59]	87.53	86.5	95.03	90.77	86.73	86.23	88.80
Li et al. [46]	89.54	89.34	95.24	92.39	87.58	88.34	90.41
Yu and Grauman [82]	90.47	92.43	95.7	94.1	90.43	91.1	92.37
Singh and Lee [69]	96.1	97.64	98.89	97.2	96.31	95.98	97.02
Souri et al. [71] VGG	97.65	98.43	99.4	97.44	96.88	96.79	97.77
DeepPermNet (Sinkhorn Norm.)	96.09	94.53	97.21	96.65	96.46	98.77	96.62
DeepPermNet (Bi-level Opt.)	97.99	98.21	97.76	97.10	97.21	96.65	97.49
DeepPermNet (Sinkhorn Norm. + VGG16)	96.87	97.99	96.87	99.79	99.82	99.55	98.48
DeepPermNet (Bi-level Opt. + VGG16)	98.12	99.92	98.13	97.78	98.72	97.87	98.42

TABLE 1

Evaluating the proposed model applied to the relative attributes task on the Public Figures Dataset. We report the pairwise accuracy as well as its mean across the attributes.

Method	Lips	Eyebrows	Chubby	Male	Eyes	Nose	Face	Smiling	Forehead	White	Young	Mean
Parikh and Grauman [59]	79.17	79.87	76.27	81.80	81.67	77.40	82.33	79.90	87.60	76.97	83.20	80.56
Li et al. [46]	81.87	81.84	79.97	85.33	83.15	80.43	86.31	83.36	88.83	82.59	84.41	83.37
Yu and Grauman [82]	90.43	89.83	87.37	91.77	91.40	89.07	86.70	87.00	94.00	87.43	91.87	89.72
Souri et al. [71] VGG	93.62	94.53	92.32	95.50	93.19	94.24	94.76	95.36	97.28	94.60	94.33	94.52
DeepPermNet (Sinkhorn Norm.)	99.55	97.21	97.66	99.44	96.54	96.21	99.11	97.88	99.00	97.99	<u>99.00</u>	<u>98.14</u>
DeepPermNet (Bi-level Opt.)	99.53	96.65	98.54	98.99	97.21	94.72	99.44	98.55	98.77	95.66	98.77	97.89
$\Delta =$	5.93		7.22				4.68				4.67	3.62

TABLE 2

Method	Depth-Close	Diagonal-Plane	Natural	Open	Perspective	Size-Large	Mean
Parikh and Grauman [59]	87.53	86.5	95.03	90.77	86.73	86.23	88.80
Li et al. [46]	89.54	89.34	95.24	92.39	87.58	88.34	90.41
Yu and Grauman [82]	90.47	92.43	95.7	94.1	90.43	91.1	92.37
Singh and Lee [69]	96.1	97.64	98.89	97.2	96.31	95.98	97.02
Souri et al. [71] VGG	97.65	98.43	99.4	97.44	96.88	96.79	97.77
DeepPermNet (Sinkhorn Norm.)	96.09	94.53	97.21	96.65	96.46	98.77	96.62
DeepPermNet (Bi-level Opt.)	97.99	98.21	97.76	97.10	97.21	96.65	97.49
DeepPermNet (Sinkhorn Norm. + VGG16)	96.87	97.99	96.87	99.79	99.82	99.55	98.48
DeepPermNet (Bi-level Opt. + VGG16)	98.12	99.92	98.13	97.78	98.72	97.87	98.42

Sorting Long Sequences - Smiling

Experiments - Learning to Rank

Permutation prediction + Sorting Algorithm

TABLE 3 Evaluation on supervised learning to rank

	Scene interestingness			Car chronology		
Method	NDCG	KT	Pair. Acc.	NDCG	KT	Pair. Acc.
Joachims [29]	0.870	0.317	65.8	0.928	0.482	74.1
Xu and Li [64]	0.745	-0.077	46.1	0.827	0.118	55.9
Wu et al. [62]	0.860	0.315	64.3	0.935	0.409	70.6
Cao et al. [8]	0.821	0.118	55.9	0.872	0.291	64.5
Xia et al. [63]	0.862	0.282	64.1	0.854	0.278	63.9
Fernando et al. [19]	0.887	0.347	67.4	.949	0.553	76.9
DeepPermNet (Sinkhorn Norm.)	0.922	0.360	68.0	0.968	0.724	86.2
DeepPermNet (Bi-level Opt.)	0.923	0.363	68.2	0.964	0.700	84.9

Structure In The Inputs

[DeepPermNet: Visual Permutation Learning. **Rodrigo Santa Cruz**, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]

[Visual Permutation Learning. **Rodrigo Santa Cruz**, Basura Fernando, Anoop Cherian, Stephen Gould. Pattern Analysis and Machine Intelligence (PAMI), 2018]

Self-Supervised Representation Learning

We hypothesize that the model trained to solve such task is able to capture highlevel semantic concepts, structure and shared patterns in visual data.

Visual Permutation Learning

• Pretrain in the visual permutation learning:

Avoiding "Shortcuts"

- 1. Randomly crop a squared region of the image;
- 2. Split the resized crop into a 3 × 3 grid cell;
- 3. Randomly select 64 × 64 pixels tiles from each cell;

Others: Low level statistics and Chromatic Aberration.

Existing Self-Supervised Learning Methods

[Doersch et al., ICCV 2015]

90° rotation 270° rotation [Gidaris, et al., *ICLR 2018*]

[Zhang et al., ECCV16]

Pre-training Method	Pretext task	Cls.	Det.	Seg.
ImageNet	Supervised	78.2	56.8	48.0
Random Gaussian	None	53.3	43.4	19.8
Agrawal et al. [2015]	Estimating Ego-motion	52.9	41.8	-
Doersch et al. [2015b]	Context Prediction	55.3	46.6	-
Wang and Gupta [2015]	Visual tracking	58.4	44.0	-
Pathak et al. [2016]	Context autoencoder	56.5	44.5	29.7
Donahue et al. [2017]	Adversarial Learning	58.9	45.7	34.9
Zhang et al. [2016]	Image colorization	65.6	47.9	35.6
Noroozi and Favaro [2016]*	Image jigsaws	67.6	53.2	37.6
Owens et al. [2016]	Ambient sounds	61.3	44.0	-
Bojanowski and Joulin [2017]	Alignment with noisy targets	65.3	49.4	-
Noroozi et al. [2017]	Counting visual primitives	67.7	51.4	36.6
Lee et al. [2017]	Sorting sequences	63.8	46.9	-
Pathak et al. [2017]	Motion-based segmentation	61.0	52.2	-
Zhang et al. [2017b]	Cross-channel prediction	67.1	46.7	36.0
Larsson et al. [2017]	Image colorization	65.9	-	38.0
Jenni and Favaro [2018]	Predicting synthetic artifacts	69.8	52.5	38.1
Gidaris et al. [2018]	Predicting image rotation	72.97	54.4	39.1
Kim et al. [2018]	Damaged image jigsaws	69.2	52.4	39.3
Nathan Mundhenk et al. [2018]	Improved context prediction	69.6	55.8	41.2
Ren and Jae Lee [2018]	Multi-task	68.0	52.6	-
DeepPermNet (Sinkhorn Norm.)*	Visual Permutation Learning	69.4	49.5	37.9
DeepPermNet (Bi-level Opt.)*	Visual Permutation Learning	65.5	45.7	36.4

Pre-training Method	Pretext task	Cls.	Det.	Seg.
ImageNet	Supervised	78.2	56.8	48.0
Random Gaussian	None	53.3	43.4	19.8
Agrawal et al. [2015]	Estimating Ego-motion	52.9	41.8	-
Doersch et al. [2015b]	Context Prediction	55.3	46.6	-
Wang and Gupta [2015]	Visual tracking	58.4	44.0	-
Pathak et al. [2016]	Context autoencoder	56.5	44.5	29.7
Donahue et al. [2017]	Adversarial Learning	58.9	45.7	34.9
Zhang et al. [2016]	Image colorization	65.6	47.9	35.6
Noroozi and Favaro [2016]*	Image jigsaws	67.6	53.2	37.6
Owens et al. [2016]	Ambient sounds	61.3	44.0	-
Bojanowski and Joulin [2017]	Alignment with noisy targets	65.3	49.4	-
Noroozi et al. [2017]	Counting visual primitives	67.7	51.4	36.6
Lee et al. [2017]	Sorting sequences	63.8	46.9	-
Pathak et al. [2017]	Motion-based segmentation	61.0	52.2	-
Zhang et al. [2017b]	Cross-channel prediction	67.1	46.7	36.0
Larsson et al. [2017]	Image colorization	65.9	-	38.0
Jenni and Favaro [2018]	Predicting synthetic artifacts	69.8	52.5	38.1
Gidaris et al. [2018]	Predicting image rotation	72.97	54.4	39.1
Kim et al. [2018]	Damaged image jigsaws	69.2	52.4	39.3
Nathan Mundhenk et al. [2018]	Improved context prediction	69.6	55.8	41.2
Ren and Jae Lee [2018]	Multi-task	68.0	52.6	-
DeepPermNet (Sinkhorn Norm.)*	Visual Permutation Learning	69.4	49.5	37.9
DeepPermNet (Bi-level Opt.)*	Visual Permutation Learning	65.5	45.7	36.4

 $\Delta(Cls) = 16\%$

Pre-training Method	Pretext task	Cls.	Det.	Seg.
ImageNet	Supervised	78.2	56.8	48.0
Random Gaussian	None	53.3	43.4	19.8
Agrawal et al. [2015]	Estimating Ego-motion	52.9	41.8	-
Doersch et al. [2015b]	Context Prediction	55.3	46.6	-
Wang and Gupta [2015]	Visual tracking	58.4	44.0	-
Pathak et al. [2016]	Context autoencoder	56.5	44.5	29.7
Donahue et al. [2017]	Adversarial Learning	58.9	45.7	34.9
Zhang et al. [2016]	Image colorization	65.6	47.9	35.6
Noroozi and Favaro [2016]*	Image jigsaws	67.6	53.2	37.6
Owens et al. [2016]	Ambient sounds	61.3	44.0	-
Bojanowski and Joulin [2017]	Alignment with noisy targets	65.3	49.4	-
Noroozi et al. [2017]	Counting visual primitives	67.7	51.4	36.6
Lee et al. [2017]	Sorting sequences	63.8	46.9	-
Pathak et al. [2017]	Motion-based segmentation	61.0	52.2	-
Zhang et al. [2017b]	Cross-channel prediction	67.1	46.7	36.0
Larsson et al. [2017]	Image colorization	65.9	-	38.0
Jenni and Favaro [2018]	Predicting synthetic artifacts	69.8	52.5	38.1
Gidaris et al. [2018]	Predicting image rotation	72.97	54.4	39.1
Kim et al. [2018]	Damaged image jigsaws	69.2	52.4	39.3
Nathan Mundhenk et al. [2018]	Improved context prediction	69.6	55.8	41.2
Ren and Jae Lee [2018]	Multi-task	68.0	52.6	-
DeepPermNet (Sinkhorn Norm.)*	Visual Permutation Learning	69.4	49.5	37.9
DeepPermNet (Bi-level Opt.)*	Visual Permutation Learning	65.5	45.7	36.4

 $\Delta(\text{Cls}) = 16\%$ $\Delta(\text{Det}) = 6\%$

Pre-training Method	Pretext task	Cls.	Det.	Seg.
ImageNet	Supervised	78.2	56.8	48.0
Random Gaussian	None	53.3	43.4	19.8
Agrawal et al. [2015]	Estimating Ego-motion	52.9	41.8	-
Doersch et al. [2015b]	Context Prediction	55.3	46.6	-
Wang and Gupta [2015]	Visual tracking	58.4	44.0	-
Pathak et al. [2016]	Context autoencoder	56.5	44.5	29.7
Donahue et al. [2017]	Adversarial Learning	58.9	45.7	34.9
Zhang et al. [2016]	Image colorization	65.6	47.9	35.6
Noroozi and Favaro [2016]*	Image jigsaws	67.6	53.2	37.6
Owens et al. [2016]	Ambient sounds	61.3	44.0	-
Bojanowski and Joulin [2017]	Alignment with noisy targets	65.3	49.4	-
Noroozi et al. [2017]	Counting visual primitives	67.7	51.4	36.6
Lee et al. [2017]	Sorting sequences	63.8	46.9	-
Pathak et al. [2017]	Motion-based segmentation	61.0	52.2	-
Zhang et al. [2017b]	Cross-channel prediction	67.1	46.7	36.0
Larsson et al. [2017]	Image colorization	65.9	-	38.0
Jenni and Favaro [2018]	Predicting synthetic artifacts	69.8	52.5	38.1
Gidaris et al. [2018]	Predicting image rotation	72.97	54.4	39.1
Kim et al. [2018]	Damaged image jigsaws	69.2	52.4	39.3
Nathan Mundhenk et al. [2018]	Improved context prediction	69.6	55.8	41.2
Ren and Jae Lee [2018]	Multi-task	68.0	52.6	-
DeepPermNet (Sinkhorn Norm.)*	Visual Permutation Learning	69.4	49.5	37.9
DeepPermNet (Bi-level Opt.)*	Visual Permutation Learning	65.5	45.7	36.4

 Δ (Cls) = 16% Δ (Det) = 6% Δ (Seg) = 18%

Pre-training Method	Pretext task	Cls.	Det.	Seg.
ImageNet	Supervised	78.2	56.8	48.0
Random Gaussian	None	53.3	43.4	19.8
Agrawal et al. [2015]	Estimating Ego-motion	52.9	41.8	-
Doersch et al. [2015b]	Context Prediction	55.3	46.6	-
Wang and Gupta [2015]	Visual tracking	58.4	44.0	-
Pathak et al. [2016]	Context autoencoder	56.5	44.5	29.7
Donahue et al. [2017]	Adversarial Learning	58.9	45.7	34.9
Zhang et al. [2016]	Image colorization	65.6	47.9	35.6
Noroozi and Favaro [2016]*	Image jigsaws	67.6	53.2	37.6
Owens et al. [2016]	Ambient sounds	61.3	44.0	-
Bojanowski and Joulin [2017]	Alignment with noisy targets	65.3	49.4	-
Noroozi et al. [2017]	Counting visual primitives	67.7	51.4	36.6
Lee et al. [2017]	Sorting sequences	63.8	46.9	-
Pathak et al. [2017]	Motion-based segmentation	61.0	52.2	-
Zhang et al. [2017b]	Cross-channel prediction	67.1	46.7	36.0
Larsson et al. [2017]	Image colorization	65.9	-	38.0
Jenni and Favaro [2018]	Predicting synthetic artifacts	69.8	52.5	38.1
Gidaris et al. [2018]	Predicting image rotation	72.97	54.4	39.1
Kim et al. [2018]	Damaged image jigsaws	69.2	52.4	39.3
Nathan Mundhenk et al. [2018]	Improved context prediction	69.6	55.8	41.2
Ren and Jae Lee [2018]	Multi-task	68.0	52.6	-
DeepPermNet (Sinkhorn Norm.)*	Visual Permutation Learning	69.4	49.5	37.9
DeepPermNet (Bi-level Opt.)*	Visual Permutation Learning	65.5	45.7	36.4

 $\Delta(\text{Cls}) = 16\%$ $\Delta(\text{Det}) = 6\%$ $\Delta(\text{Seg}) = 18\%$

Structure In The Models

[Neural Algebra of Classifiers. **Rodrigo Santa Cruz**, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.]

Which one is an **albatross**?

Which one is an **albatross**? **Albatrosses** are birds with hooked beak and large wingspan.

Which one is an **albatross**? **Albatrosses** are birds with hooked beak and large wingspan.

Albatross

Which one is an **albatross**? **Albatrosses** are birds with hooked beak and large wingspan. Which one is a **frigatebird**?

Albatross

Which one is an **albatross**? **Albatrosses** are birds with hooked beak and large wingspan. Which one is a **frigatebird**? **Frigatebirds** seem black albatrosses with white or red pouch.

Albatross

Which one is an **albatross**? **Albatrosses** are birds with hooked beak and large wingspan. Which one is a **frigatebird**? **Frigatebirds** seem black **albatrosses** with white or red pouch.

Albatross

Frigatebird

Which one is an **albatross**? **Albatrosses** are birds with hooked beak and large wingspan. Which one is a **frigatebird**? **Frigatebirds** seem black **albatrosses** with white or red pouch.

Albatross

Frigatebird

The human recognition system is fundamentally compositional, so unseen visual complex concepts are recognized from the composition of simple visual primitives according to well-defined rules.

Neural Algebra Of Classifiers

Neural Algebra Of Classifiers

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Training:

Training Expressions Training Images

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Training:

Learn...

1) Primitives: w_p $\in \mathbb{R}^{D}$

2) Image representation: $h_{\phi}(x) \in \mathbb{R}^{D}$

3) Mapping function $f_{\Theta}(e) \in \mathbb{R}^{D}$

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Training:

Learn...

1) Primitives: w_p $\in \mathbb{R}^{D}$

- 2) Image representation: $h_{\phi}(x) \in \mathbb{R}^{D}$
- 3) Mapping function $f_{\Theta}(e) \in \mathbb{R}^{D}$

Test:

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Test:

Training:

Training Validation Expressions Images

Learn...

1) Primitives: $W_p \in R^p$

- 2) Image representation: $h_{\Phi}(x) \in \mathbb{R}^{D}$
- 3) Mapping function: $f_{\Theta}(e) \in \mathbb{R}^{D}$

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Training:

Training Validation Expressions Images

Test Expressions

Test Images

Learn...

1) Primitives: $W_{p} \in R^{D}$

- 2) Image representation: $h_{\Phi}(x) \in \mathbb{R}^{D}$
- 3) Mapping function: $f_{\Theta}(e) \in \mathbb{R}^{D}$

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Training:

Test:

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Training:

Test:

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Test:

Training:

We propose to learn a function $f_{\Theta}(\cdot)$ that maps the space of expressions to the space of binary classifiers:

Test:

Training:

Neural Algebra of Classifiers

Neural Algebra of Classifiers

We represent primitives by the parameters of one-vs-all SVM classifiers trained on positives and negatives images of the primitives.

Neural Algebra of Classifiers

We represent images in a feature space, e.g., CNN features.

We model our function as a set of composition functions and simplify them using simple analytical relations and De Morgan's laws.

We parse the expression tree applying the composition functions recursively.

Neural Algebra of Classifiers

We score images according to the "predicted classifier" for a given expressions.

Neural Algebra of Classifiers

We minimize the classification loss of batches of positive and negative images for different training expressions.

Blue or Red Socks Without Holes

B

R

H

S

W_{socks} B R H

W_{socks} B R H

W_{socks} B R H

W_{socks} W_{blue} B R H

W_{socks} W_{blue} B R H

W_{socks} W_{blue} B R H

Blue or Red Socks Without Holes

Blue or Red Socks Without Holes

Blue or Red Socks Without Holes

 $f(e) = g^{(g^{(w_{socks, g^{(w_{blue, w_{red}})}), g^{not}(w_{holes}))}$

 $\begin{aligned} \mathbf{f}(\mathbf{e}) &= \mathbf{g}^{(\mathbf{g}^{(\mathbf{w}_{\mathsf{socks}}, \mathbf{g}^{\mathsf{v}}(\mathbf{w}_{\mathsf{blue}}, \mathbf{w}_{\mathsf{red}})), \, \mathbf{g}^{\mathsf{not}}(\mathbf{w}_{\mathsf{holes}})) \\ &= \mathbf{w}_{\mathsf{e}} \in \mathsf{R}^{\mathsf{D}} \end{aligned}$

Simplifying ...

We model our function as a set of composition functions and simplify them using simple analytical relations and De Morgan's laws.

$$g_{\theta}^{\wedge}(w_a, w_b) = \text{Neural Network}(w_a, w_b)$$
$$g^{\neg}(w) = -w$$
$$g^{\vee}(w_a, w_b) = g^{\neg}(g^{\wedge}(g^{\neg}(w_a), g^{\neg}(w_b)))$$

Table 1. Evaluating known/unl a OR b nd conjunctive expressions on the CU a AND b t.												
	k	Die CNOWI		Unknow			Known			Expressions Unknow		
Metrics	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER
Chance	39.70	50.00	50.0	40.60	50.00	50.0	4.55	50.0	50.0	4.59	50.0	50.0
Supervised	65.25	74.76	31.58	-	-	-	22.87	78.02	29.69	-	-	-
Independent	58.73	68.39	36.76	60.66	69.28	36.10	17.23	77.22	29.94	19.16	78.00	29.28
Neural Alg. Classifiers	70.10	77.36	29.44	71.18	77.76	29.04	23.09	81.54	26.36	23.87	81.98	25.85

Table 2. Evaluating known/unknown disjunctive and conjunctive expressions on the AwA2 dataset.

	Disjunctive Expressions					Conjunctive Expressions						
	Known Exp.			Unknown Exp.			Known Exp.			Unknown Exp.		
Metrics	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER	MAP	AUC	EER
Chance	53.19	50.0	50.0	53.04	50.0	50.0	18.77	50.0	50.0	21.17	50.0	50.0
Supervised	97.47	97.20	8.13	-	-	-	94.90	98.53	6.00	-	-	-
Independent	97.28	97.12	8.70	97.86	97.58	6.77	93.95	98.13	6.80	93.90	97.87	7.36
Neural Alg. Classifiers	98.84	98.67	5.84	99.05	98.91	5.24	95.95	98.79	5.29	96.50	98.81	5.34

Experiments - Complex Expressions - CUB200

Complex Unknown Expressions in Conjunctive Normal Form (CNF): ($p_1 \lor q_1$) \land ($p_2 \lor q_2$) \land ($p_c \lor q_c$)

Experiments - Complex Expressions - AWA2

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of different color (e.g., blue, yellow, or red.)

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of different color (e.g., blue, yellow, or red.)

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of different color (e.g., blue, yellow, or red.)

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of different color (e.g., blue, yellow, or red.)

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)

Big and fast animals that are not hunters: (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of different color (e.g., blue, yellow, or red.)

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)

Big and fast animals that are not hunters: (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)

Birds with crown and breast of the same color (e.g., blue, yellow, or red.)

Birds with crown and breast of different color (e.g., blue, yellow, or red.)

(RB AND BC) OR (RB AND YC) OR (BB AND RC) OR (BB AND YC) OR (YB AND RC) OR (YB AND BC)

Big and fast animals that are not hunters: (B AND F) AND (NOT H) = (NOT (S OR SL)) AND (NOT H)

Extending Existing Models

[Inferring Rich Compositional Activities in Videos. **Rodrigo Santa Cruz**, Dylan Campbell, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE international conference on computer vision (ICCV), 2019. **(Under Review)**]

174

Activity Recognition from Natural Language

Someone . . .

"... is talking on the phone, dressing a jacket and brushing hair."

" . . . is talking on the phone and holding a jacket, then he dresses it and brushes his hair."

"... is talking on the phone while dressing a jacket and brushing hair."

We propose inference framework which can recognize <u>complex activities</u> expressed as <u>regular expressions</u> of simpler actions.

We propose inference framework which can recognize <u>complex activities</u> expressed as <u>regular expressions</u> of simpler actions.

Simple actions: TP = talks on the phone; HJ = Holding a jacket; D = Dressing; BH = Brushing Hair;

We propose inference framework which can recognize <u>complex activities</u> expressed as <u>regular expressions</u> of simpler actions.

Simple actions: TP = talks on the phone; HJ = Holding a jacket; D = Dressing; BH = Brushing Hair;

```
(TP, HJ)(TP, D)(TP, BH)
```

We propose inference framework which can recognize <u>complex activities</u> expressed as <u>regular expressions</u> of simpler actions.

Simple actions: TP = talks on the phone; HJ = Holding a jacket; D = Dressing; BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)

We propose inference framework which can recognize <u>complex activities</u> expressed as <u>regular expressions</u> of simpler actions.

Simple actions: TP = talks on the phone; HJ = Holding a jacket; D = Dressing; BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)

We propose inference framework which can recognize <u>complex activities</u> expressed as <u>regular expressions</u> of simpler actions.

Simple actions: TP = talks on the phone; HJ = Holding a jacket; D = Dressing; BH = Brushing Hair;

(TP, HJ)(TP, D)(TP, BH)

It allows to recognize new, specific instances, and groups of activities without additional annotation effort in a <u>unambiguously</u> fashion.

Problem Formulation
/	
Primitives	Symbols
$\mathcal{A} = \{a_i\}_{i=1}^M$	$w\in\mathcal{P}\left(\mathcal{A} ight)$

,		
Redex Operators		
Integer Open		
$(\mathcal{O} - \{ \subseteq $		
$U = \{r,$	1 ^ 5	
~	'	

Describe complex activities by regular expressions of subset of primitive actions (symbols):

$$a_{gc} \succ (\{a_d, a_{tc}\} | \{a_d, a_{ts}\})^*$$

Describe complex activities by regular expressions of subset of primitive actions (symbols):

$$a_{gc} \succ (\{a_d, a_{tc}\} \mid \{a_d, a_{ts}\})^*$$

Then, our goal is to model a function f that assigns high values to a video v if it depicts the action pattern described by the regular expression r and low values otherwise.

$$f_r: \mathcal{V} \to [0,1]$$

Deterministic Baseline

- 1. Compile a deterministic finite automaton (DFA) to recognise a given action pattern;
- 2. Parse video to a subset of action primitives w(x) by thresholding primitive action classifiers at every frame x;

$$w(x) = \{a \in \mathcal{A} \mid p(a|x) \ge \tau\}$$

3. Simulate the DFA with the parsed video;

 $V = [\{a_{gc}\}, \{a_{d}, a_{tc}\}, \{a_{d}, a_{tc}\}, \{a_{d}, a_{tc}\}, \dots]$

4. Compute the score function.

 $f_r(v) = \frac{dist(q_0, \hat{q})}{dist(q_0, \hat{q}) + \min_{q_f \in \mathcal{F}} dist\left(\hat{q}, q_f\right)}$

Probabilistic Inference - 1/2

1. Compile the regular expression to a probabilistic automaton (PA) as follow,

Probabilistic Inference - 2/2

2. Define an distribution over the power set of action primitives Σ ;

$$p(w|x) = \left(\prod_{a \in \mathcal{A}} p(a|x)^{\llbracket a \in w \rrbracket} (1 - p(a|x))^{(1 - \llbracket a \in w \rrbracket)}\right)^{\gamma}$$

3. We compute the matching probability;

$$P_{U_r}(v) = \left(\boldsymbol{\rho}^{\mathsf{T}} \prod_{i=1}^{|v|} \sum_{w \in \Sigma} T(w) p(w \mid x_i)\right)^{\frac{1}{|v|}} f$$

Experiments - Moving MNIST

We generate videos with different digits appearing patterns expressed by regular expressions of the format,

$$w_1^+ \succ \cdots \succ \left(\left(w_s^{1^+} \succ \cdots \succ w_n^{1^+} \right) \middle| \cdots \middle| \left(w_s^{d^+} \succ \cdots \succ w_n^{d^+} \right) \right)$$

where the symbols *w* are subsets of the primitives which are the 10 digit classes.

Data generation parameters:

- n: number of sequential patterns
- d: number of alternatives
- s: alternatives start position
- |w|: number of digits appearing simultaneously
- Total number of generated frames

Experiments - Moving MNIST

Experiments - Activity Recognition - MultiTHUMOS

Experiments - Activity Recognition - Charades

Experiments - Qualitative Results

 ${\rm [Jump]}^+ \succ {\rm [Body-Roll]}^+ \succ {\rm [Body-Bend]}^+ \qquad {\rm [WaThDo]}^+ \succ {\rm [WaThDo, OpDo]}^+ \succ {\rm [WaThDo, ClDo]}^+$

Experiments - Qualitative Results - Failures

 ${\text{Stand}}^+ \succ {\text{Stand, Throw}}^+ \succ {\text{Stand, Golf-Swing}}^+$

{WaThDo, OpDo, GaOnDoKn, HoBa}⁺ \succ {WaThDo, ClDo, GaOnDoKn, HoBa}⁺

Conclusion

- This thesis...
 - ... focuses on reducing the exhaustive human supervision required by the current state-of-the-art models for visual recognition.
 - ... presents approaches to overcome the closed world assumption of existing models.
 - ... accomplishes its goals by exploring the structure and regularities in the visual world.
 - Applications:
 - Image Ranking.
 - Self-Supervised Representation Learning.
 - Compositional Model for Object Classification.
 - Activity Recognition from Regular Expressions of Primitives.
- Future Work:
 - Visual Permutation Learning Beyond Static Images.
 - Compositional Models Beyond Classification.
 - Modelling Action Correlation, Co-occurrences and Contextuality.

Visual Recognition From Structured Supervision

Rodrigo Santa Cruz and Stephen Gould