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Abstract

Visual recognition of semantically meaningful entities like objects, actions, and poses
in images and videos is a long standing goal of computer vision. In the last decades,
we have seen progress towards this goal with the development of machine learning
models that leverage huge volumes of human annotated data to perform very ac-
curate recognition of a predefined set of visual entities. However, moving forward,
this approach presents significant limitations since annotated datasets are expensive
to collect, only contemplate a small fraction of the real world, and the labelling task
itself is prone to inconsistency and ambiguity on denoting visual entities. Therefore,
this reliance on exhaustive labeling is indeed the key obstacle to the fulfillment of
such a goal.

In this thesis, we propose methods that reduce the need for human supervision
by leveraging the structure in the visual world targeting visual recognition in difficult
scenarios where annotated data is scarce and the visual concepts are innumerable or
ambiguous. We call this approach structured supervised learning and explore three
instances of structured supervision. We start by exploring structure in the output of
visual recognition models to learn better models for ranking images according to a
predefined criteria, like the visual attribute “smiling”. Towards this end, we first cast
the problem of image ranking as the problem of predicting the correct permutation of
a set of images. Then, we leverage the geometrical structure of permutation matrices
in order to learn accurate image rankers.

Next, we explore the self-supervision that can be extracted from input visual
data itself. More specifically, unlabeled visual data itself encompasses rich spatial
(and temporal) structure that can be explored in order to learn representations use-
ful for generic visual recognition tasks. In contrast to human annotators, this form
of self-supervision is cheap and abundant. Following this idea, we use the spatial
layout of objects as a supervisory signal to learn transferable image representations
from unlabeled data for object recognition tasks such as image classification, object
detection, and object segmentation.

Last, we observe that the visual world is fundamentally compositional and com-
plex visual concepts are structured compositions of simple primitive concepts. We
build in this insight and formulate frameworks to unambiguously describe and rec-
ognize compositional visual concepts in images and videos by exploring structural
information in model space. More specifically, we classify objects from boolean ex-
pressions of object attributes and infer activities from regular expressions of atomic
actions. The proposed models can predict unseen, subcategories and specific in-
stances of complex visual concepts without any additional annotation effort, result-
ing in a more feasible direction to fulfill the visual recognition goal.
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Chapter 1

Introduction

“The revolution will not be supervised.”

Yann LeCun, 2018

One of the most impressive human skills is the capability to recognize and under-
stand the complex visual world by extracting semantically meaningful information
from images and videos at first glance. For instance, humans can localize objects,
identify actions, or say exactly which pixels belong to each object in an effortless,
even unconscious manner [DiCarlo et al., 2012]. In computer vision and artificial
intelligence, an important ongoing research topic, named visual recognition, is to en-
dow computers with such an ability [Russell and Norvig, 2016; Szeliski, 2010]. This
topic is very important since it is an essential step towards the development of au-
tonomous agents (i.e., machines) that can reason and act in their environments. For
example, self-driving vehicles need to localize objects such as cars, people, and traf-
fic signals in order to safely navigate in the environment [Zhu et al., 2016; Pinggera
et al., 2016], eliminating hazards in construction sites requires to recognize unsafe
conditions and acts in video footage [Seo et al., 2015], and automatic diagnosing can-
cer in MR images consists of labeling image regions as infected or non-infected tissue
[Nie et al., 2016; Cheng et al., 2016].

More specifically, visual recognition refers to the act of classifying, localizing, seg-
menting or even comparing semantic meaningful visual entities like objects, actions
and poses in visual inputs like images and videos. This problem is as challenging
as important, since we need to deal with view point, scale, occlusion, lighting, and
appearance variations of every visual entity to be recognized. Despite these chal-
lenges, many computer vision researchers undertook the task of developing vision
systems for visual recognition [Marr and Nishihara, 1978; Minsky, 1988; Viola and
Jones, 2001; Lowe, 2004; Dalal and Triggs, 2005; Felzenszwalb et al., 2010; Dollár
et al., 2014]. In a historical perspective, we highlight the pioneering work of Marr
and Nishihara [1978] on proposing a computational theory for vision, the inspiring
work of Minsky [1988] who built a robotic arm with mounted camera to build with
children’s blocks in the early 1970s, and Viola and Jones [2001] who, arguably, first
brought visual recognition out of the lab environment by developing a face detec-
tion framework able to achieve satisfactory detection rates in real-time. These early

1
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Figure 1.1: The results of the ImageNet Challenge along the years. It is important
to observe the steady decreasing in the winner’s error rate, the increasing in the
number of participants using GPUs, and the increasing in the number of layers used
by the winner’s deep learning model after ILSVRC’12. These facts reflect the level of

improvement brought by deep learning models to visual recognition problems.

works, however, rely on hand-crafted algorithms and failed to scale to large scale
recognition problems and applications.

More recently, systems using a fully data-driven approach have made signifi-
cant progress in visual recognition [LeCun et al., 2015]. These systems are known as
deep learning models and consist of fully supervised high capacity machine learning
models that can leverage huge volumes of human annotated data in order to perform
accurate visual recognition directly from pixels. The level of improvement brought
by deep learning models can be illustrated with the results of the ImageNet Chal-
lenge [Russakovsky et al., 2015] along the years. As shown in Figure 1.1, initially, the
existent algorithms had an error rate above to 25%, until 2012 when Krizhevsky et al.
[2012] proposed a deep neural network approach, named AlexNet, and dropped the
error rate by approximately 10%. In the subsequent years, we saw an increasing num-
ber of participants using deep nets which resulted in a steady rate of improvement
that eventually surpassed human level accuracy by 2% in 2015 with the ResNet model
[He et al., 2016]. Similar trend can be observed in other visual recognition problems
like visual question answering [Goyal et al., 2017] and object detection [Everingham
et al., 2015]. These accomplishments provoked the dissemination of deep learning
techniques in computer vision and now most of the vision systems in academia and
industry are based on deep learning. For instance, Google has increased the presence
of deep learning algorithms in their products exponentially [Dean, 2017].

The major requirement for applying deep learning models in a diverse range
of visual recognition applications is the existence of large scale human annotated
datasets. Consequently, researchers and practitioners have been spending most of
their time curating large datasets and training even larger deep learning models in
order to succeed in their desired application. However, having in mind the human
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[Bart Thomee et al., 2015]
8M visual concepts on the web (360x)

[Russakovsky et al., 2015]
● 14M Images
● 22K Visual Concepts
● 10 years

[Biederman et al., 1987]
● 30K Nouns (1.4x)

[George A. Miller, 1995 ]
● Lexical database of English
● 175 979 Synset (8x)

[Facebook Inc., 2013]
● 300M images/day (21x)

Figure 1.2: Comparing the Image-Net, one of the largest publicly available dataset
for visual recognition, with conservative estimates of the amount of data we produce
and visual concepts that we can recognize found in the literature. As you can see, it is
not feasible to collect and annotate data for all concepts that a human can recognize.

visual system capabilities, is the way to solve visual recognition to collect data for all
the things we want to recognize?

The enthusiasts of deep learning may argue that data collection is not a problem
nowadays, due to the popularization of crowdsourcing marketplaces like Amazon
Mechanical Turk (AMT) [Sorokin and Forsyth, 2008] and the dissemination of data
collection companies around the world. They can even state that the human perfor-
mance on visual recognition tasks can be always achieved by scaling out the data
curation and training very large models since deep learning models seem to im-
prove as more annotated data is provided [Sun et al., 2017]. Such statements may
be true for applications in stationary environments where the number of concepts
and the appearance variation of their instances are limited like the visual recognition
challenges that attract a lot of attention in the major computer vision conferences.
However, it is not feasible to collect and annotate data for all concepts that a human
can recognize.

As you can observe in Figure 1.2, the ImageNet dataset that is an effort with
almost 10 years only contemplate annotated images for approximately 12% of Word-
Net [Miller, 1995], which is just a very modest lower bound for the concepts that we
can recognize. This discrepancy becomes even worse if we compare to the amount
of data we generate in the social media. For instance, the Facebook image collection
increases 300 million images per day which is more than 21 ImageNets daily [Face-
book Inc., 2013]. In addition, some types of annotations are very laborious to collect
like pixel-level labelling or can just be performed by a domain specialist like medical
images. Therefore, even aided by the nowadays data curation technologies, we are
not able to generate human annotated datasets in scale compatible with the richness
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(a) (b) (c)

Figure 1.3: Examples of structural information in the outputs of visual recognition
models that can help a learner to perform accurate predictions. In the human pose
estimation problem shown in Figure 1.3(a), the prediction of the head position should
not be very far from the prediction of the shoulders position. In the segmentation
map shown in Figure 1.3(b) the labels colored as green and gray should be “grass”
and “sky” since they often appear in the bottom and top regions of the images,
respectively. Figure 1.3(c) shows the geometric structure of permutation and doubly
stochastic matrices that can be used to prune infeasible solutions (e.g., red dot) for

ranking problems as shown in Chapter 3.

depicted in the real world in which humans perform visual recognition with mastery.
In addition, the labelling process is problematic by itself being subject to artificial

bias, inconsistencies, and ambiguities [Torralba and Efros, 2011]. For instance, we
tend to curate datasets with artificial distributions in order to make it convenient for
us to train and test recognition algorithms. These distributions end up biasing our
model and degrading its performance in the real world distribution. This problem is
even more alarming with deep learning models that are known to be easily fooled by
out-of-distribution samples [Alcorn et al., 2018; Tian et al., 2018]. For instance, this
generalization problem may be the cause of the accident involving a Tesla autopilot
car that failed to recognize a white truck against a bright-lit sky – an unusual view
that might be out of the training distribution – it crashed into the truck, killing the
driver [Lambert, 2016; Tesla Motors, Reuters, 2016]. Similar tragedy also happened
with the self-driving Uber car that killed a pedestrian [Grabar, 2018]. Another prob-
lem with the labelling process is the inconsistencies and ambiguities generated by
different annotators. For instance, the exact moment an action starts and ends in a
video clip is subject to the annotators which ends up producing datasets with a lot
of ambiguities that make the learning ineffective. Therefore, even if we were able to
set up an army of annotators to produce a dataset for the entire visual world, we
still would have problems to apply the deep learning approach or any other fully
supervised machine learning algorithm.

Therefore, the reliance on extensive human supervision is indeed the key obsta-
cle to have visual recognition systems operating as well as humans. We, along with
many other contemporary researchers, [Doersch, 2016; Vondrick, 2017; Misra, 2018],
acknowledge the importance of these fully supervised approaches, but argue that we
should explore other sources of supervision in order to perform visual recognition
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(a)

Subject: Smiling

Subject: Narrow Eyes

Permuted Image Original Image

(b)

Figure 1.4: Examples of structural information in visual inputs of visual recognition
models. Figure 1.4(a), which is a courtesy of Zhang et al. [2016], shows that the
color of images can be predicted by the general context of the depicted scene which
can be used to learn image representations. In similar fashion, in Chapter 4, we
demonstrate that the proposed visual permutation learning model, can also be used

to learn image representations by solving jigsaws like the one in Figure 1.4(b).

in difficult scenarios where annotated data is scarce and the visual concepts are in-
numerable or ambiguous. In this thesis, we propose methods that reduce the need
for extensive human supervision by leveraging the structure in the visual world. We
call this approach visual recognition from structured supervision and explore the in-
herent structure that exists in the outputs, inputs, and models for visual recognition.

Let us start by analyzing the outputs of visual recognition systems like class la-
bels, bounding boxes predictions, human joints locations and segmentation masks.
These outputs are highly structured and provide useful priors that can help a learner
to perform accurate predictions as shown in Figure 1.3. For instance, the prediction
of the head position should not be very far from the prediction of the shoulders po-
sition in human pose estimation problems due to deformations allowed by our body.
Some visual concepts often appear in certain regions of the image in image segmen-
tation problems. In Chapter 3, we follow these ideas and leverage the structure on
outputs to learn visual permutations proposing the visual permutation learning frame-
work. More specifically, we encode the ground-truth of ranking tasks as permutation
matrices and make use of their geometric structure to prune infeasible solutions (e.g.,
the red dot in the Figure 1.3(c)) for our learning and inference algorithms. Such an
approach provides more accurate rankers using the same amount of annotated data
than state-of-the-art algorithms for image ranking.

Another rich source of structure and visual priors that can be exploited in order
to better solve challenging computer vision problems is the input visual data itself.
For example, a large collection of unlabelled images depict contextual information
about its visual content, while unlabelled videos exhibit temporal coherence on the
development of an action and the deformation of the human body. Inspired by these
ideas and encouraged by the generality of the proposed visual permutation learn-
ing framework, Chapter 4 presents a self-supervised approach to learn transferable
image features by leveraging the spatial structure and other visual priors existent
in unlabelled images. Towards this end, we define tasks resembling image jigsaws
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Figure 1.5: Illustration of the proposed neural algebra of classifiers. Given classifiers for
primitive visual concepts such as hooked beak and large wingspan, we can compose
classifiers for complex concepts such as gull and albatross that are represented by

boolean expressions of these primitives.

(see Figure 1.4(b)) and demonstrate that the proposed visual permutation learning
framework trained to solve these puzzles also learns to produce useful image rep-
resentations for object recognition without human supervision. We evaluate this
hypothesis on transfer learning experiments using well known object classification,
detection and segmentation benchmarks. Note that the proposed approach can miti-
gate the need for large-scale human annotated datasets for some applications by pre-
training deep models on the proposed self-supervised task. The proposed approach
outperforms other contemporary self-supervised representation learning techniques
like image colorization shown in Figure 1.4(a).

In the same fashion of visual input and output spaces, the model space is also
highly structured. Intuitively, a dog’s classifier should be more similar to a fox’s
classifier than an elephant’s classifier since dogs and foxes are more visually similar
than dogs and elephants as described by Misra et al. [2017]. Chapter 5 leverages
this similarity and other visual priors in classifier space and develop an algebra for
combining concept classifiers, named neural algebra of classifiers. More specifically, we
first see complex visual concepts as compositions of simple visual concepts according
to well-defined rules. Then, we develop neural network modules which can learn to
compose classifiers according to these composition rules. This approach allows us
to produce classifiers for any complex concept expressed as boolean expression of
primitive concepts even without a single training sample of such a concept. As
illustrated in Figure 1.5, using a classifiers for hooked beak and large wingspan, we
can compose a classifier for albatrosses without having images of such a bird in our
training data. Likewise, we can compose a classifier for gulls without training data
by expressing such a concept as birds with hooked beak that does not have large
wings. Therefore, such a models allows us to recognize a huge number of visual
concepts without additional annotation effort.
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Figure 1.6: Examples of action patterns and corresponding ground-truth videos. In
the first row, we see examples of concurrent ({. . .}), sequential (�), and recursive
(+) actions where the woman depicted is holding a glass (hg) and pouring water
into the glass (pg) simultaneously, and then she drinks from the glass (dg) while
holding the glass. In the last two rows, we see an example of alternated (|) actions
where the desired action pattern starts with running (r) and finishes with someone

either bowling (cb) or pole vault planting (pp).

In addition to the structure existent in the model space, we can also leverage ex-
isting models to perform more expressive tasks which would require an infeasible
amount of well-trained annotators in order to apply any supervised approach. For
instance, recognizing activities in videos using a supervised deep learning model
would involve curating a dataset for the very log tailed distribution of activities like
cooking meals and group activities which is prohibitive. Chapter 6 instead presents a
probabilistic framework to unambiguously describe and accurately infer these com-
plex activities in videos using only existing simple action classifiers without annotat-
ing additional data or training new machine learning models. Similar to the neural
algebra of classifier framework, we first describe complex activities as regular ex-
pressions of simple primitive actions named action patterns. Then, we develop a
probabilistic framework that can recognize these regular expressions in videos. Fig-
ure 1.6 shows examples of such an approach. It is important to emphasize that both
this proposed inference procedure and the neural algebra of classifiers framework
can scale-up recognition systems to a very huge number of visual concepts without
any additional annotation effort like humans do.

In summary, the methods proposed in this thesis provide more accurate, extensi-
ble, and interpretable vision models using much less human supervision than black-
box fully supervised deep learning approaches. We also tackle visual recognition
in a more realistic scenario where the visual concepts are not defined a priori and
we can not annotate large volumes of data for them. Therefore, this thesis presents
a more feasible direction towards the development of visual recognition algorithms
with the capabilities of the human visual system. The following sections in the cur-
rent chapter provide a summary of our main contributions, outline the remainder of
this dissertation and enumerate our relevant previously published papers.
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8 Introduction

1.1 Thesis Contributions

This thesis contributes to visual recognition proposing methods that reduce the need
for human supervision by leveraging the structure in the visual data. We also focus
on visual recognition in difficult settings where annotated data is scarce or the num-
ber of visual concepts is innumerable. Our main contributions can be described as
follows:

1. Visual Permutation Learning. Sorting sequences of images according to a prede-
fined criterion is an important part of many computer vision problems such as image
search, person re-identification, and active learning. We propose to cast this problem
as predicting the permutation that recovers the correct order for a shuffled sequence
of images. Towards this end, we propose to represent the orderings by permutation
matrices and develop a learning framework that can explore the geometry of these
matrices and its surrogates. Incorporating the inherent structure of permutation ma-
trices can avoid the learner searching over impossible solutions, thereby leading to
faster convergence and accurate predictions.

2. Self-supervised Learning By Permuting Image Regions. We argue that human
annotators are not the only source of supervision that can guide the learning of
visual representations as in standard deep learning models. In fact, unlabeled visual
data itself encompasses rich spatial (and temporal) structure that can be explored
in order to learn representations useful for visual recognition tasks. In contrast to
human annotators, this form of self-supervision is cheap and abundant. Therefore,
using the proposed visual permutation learning framework, we formulate a pretext
task similar to image jigsaws and show that a model trained to solve such a self-
supervised task learns image representations useful for object recognition tasks such
as image classification, object detection, and object segmentation.

3. Neural Algebra of Classifiers. We build on the insight that visual concepts are
fundamentally compositional and propose an algebra for combining concept classi-
fiers according to boolean algebra operators. More specifically, we develop neural
network modules which can learn to compose classifiers according logical operators
leveraging visual priors such as correlations, co-occurrences and contextuality be-
tween visual primitives. The proposed framework is able to produce classifiers for
any complex concept expressed as a boolean expression of primitive concepts. Differ-
ent from existing works where new concepts require annotating data and retraining
machine learning models, the proposed model can predict unseen, subcategories
and specific instances of complex visual concepts without any additional annotation
effort or retraining.

4. Inferring Action Patterns in Videos. Existing algorithms for action recognition ei-
ther recognize singleton actions from a fixed vocabulary of actions or retrieve videos
using natural language sentences which are often incomplete, vague, and ambiguous
descriptions of the activity of interest. We instead build on the insight that complex
activities are fundamentally action patterns and develop a probabilistic inference
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framework to unambiguously describe and efficiently recognize activities in videos
exploring existing primitive action classifiers. The proposed approach allows us to
unambiguously distinguish between fine-grained actions, retrieve very specific ac-
tivity instances, and recognize complex composites of actions that may not have a
single training sample.

1.2 Thesis Organization

To facilitate the presentation of this material, we organize this thesis in seven chapters
including this introduction. The summary of the remaining chapters as well as their
relevant publications are described bellow:

Chapter 2: Background. This chapter is organized in two parts. In the the first
part, we review the current trend on visual recognition focusing on deep learning
models. More specifically, we formulate a generic visual recognition problem, discuss
a data-driven approach for such a problem, and present the current state-of-the-
art models for the visual recognition tasks relevant for this thesis. On the other
hand, the second part provides a concise literature review contrasting our research
with existing methods to reduce the exhaustive human supervision required by these
state-of-the-art models.

Chapter 3: Image Ranking by Predicting Permutations. This chapter, focusing on
image ranking applications, describes a framework to learn permutations of images
exploring the structure of permutation matrices. First, we review related works on
attribute-based image ranking and its applications. Second, we review background
topics important to the derivation of our model like principled algorithms to approx-
imate doubly stochastic matrices. Third, we formulate our model and describe in
detail the proposed learning and inference algorithms. Last, we evaluate our model
on image ranking applications. Relevant Publication: [Gould et al., 2016; Santa Cruz
et al., 2017; Santa Cruz et al., 2018b].

Chapter 4: Learning Image Representations by Permuting Image Regions. This
chapter describes how to use the spatial structure in images to learn image repre-
sentations in a self-supervised way. We start by describing how image jigsaws and
their solutions can be represented by permutations of image regions and permuta-
tion matrices, respectively. Then, we learn to solve these jigsaws using the visual
permutation learning framework presented in Chapter 3. Finally, we demonstrate
that this approach is a good pretext task to learn useful image representations for
objects which we evaluate on object recognition tasks such as object classification,
detection and segmentation. We also discuss related works on visual representa-
tion learning and how to properly set up the image jigsaws in order to avoid the
learning of uninformative representations. Relevant Publication: [Gould et al., 2016;
Santa Cruz et al., 2017; Santa Cruz et al., 2018b].

Chapter 5: Compositional Algebra of Classifiers. This chapter describes how to
explore regularities in classifier space in order to synthesize classifiers for new visual
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concepts. In order to accomplish such a goal, we start by reviewing vision systems
inspired by the principle of compositionality which also inspires the proposed frame-
work. Next, we propose to represent complex visual concepts as boolean expressions
of simple visual concepts. Then, we formulate our problem as an algebra of classi-
fiers which is learned from data using compositional neural network modules. We
also demonstrate that such a model can be simplified by the well known De Mor-
gan’s laws. Finally, we evaluate the proposed approach by synthesizing classifiers
for boolean expressions of attributes and categories for birds and other animals. Rel-
evant Publication: [Santa Cruz et al., 2018a].

Chapter 6: Activity Recognition as Inferring Action Patterns. This chapter de-
scribes how to leverage existing action classifiers to infer complex activities in videos.
In the same spirit of Chapter 5, we first propose to describe complex activities as reg-
ular expressions of simple actions. Then, we develop a probabilistic model that can
recognize instances of these expressions in videos. Last, we demonstrate the effec-
tiveness of our approach on activity classification in trimmed and untrimmed videos.
This chapter also reviews existing works on action recognition that try to circumvent
the need of human supervision by leveraging textual data, highlighting their limita-
tions on precisely describing complex activities. Relevant Publication: [Santa Cruz
et al., 2019].

Chapter 7: Conclusion and Future Directions. We conclude the thesis with a sum-
mary of our main contributions and discussion of future directions for improving
our work.

1.3 Publications

Much of the work described in this thesis has been previously published in confer-
ence proceedings, journals and technical reports as listed below.

• Gould, S.; Fernando, B.; Cherian, A.; Anderson, P.; Santa Cruz, R.; and

Guo, E., 2016. On differentiating parameterized argmin and argmax problems
with application to bi-level optimization. arXiv preprint arXiv:1607.05447, (2016).

• Santa Cruz, R.; Fernando, B.; Cherian, A.; and Gould, S., 2017. Deep-
permnet: Visual permutation learning. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

• Santa Cruz, R.; Fernando, B.; Cherian, A.; and Gould, S., 2018. Neural
algebra of classifiers. In Proc. of the IEEE Winter Conf. on Applications of Computer
Vision (WACV).

• Santa Cruz, R.; Fernando, B.; Cherian, A.; and Gould, S., 2018. Visual
permutation learning. In IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI).
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• Santa Cruz, R.; Campbell, D.; Fernando, B.; Cherian, A.; and Gould, S.,
2019. Inferring rich compositional activities in videos. Under review.
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Chapter 2

Background

“Artificial intelligence is the science of making
machines do things that would require intelligence
if done by men.”

Marvin Minsky, 1963

The purpose of this chapter is to provide an introduction to visual recognition
from the computer vision and machine learning perspective. We first provide an
overview of large scale visual recognition in Section 2.1. We start by defining visual
recognition as the problem of interpreting the visual world, evolve to an explanation
of the current data-driven approach for visual recognition and finish with a brief
presentation of the state-of-the-art models for different visual recognition problems.
Once the visual recognition problem and its current solutions are presented, we shift
our focus to learn visual recognition models using minimal human supervision in
Section 2.2. We provide a concise literature review on different strategies and meth-
ods to achieve such a goal. It is also important to emphasize that the current chapter
is not intended to be a comprehensive treatment of either computer vision or ma-
chine learning. For an in depth coverage, the reader should consult the excellent
textbooks on machine learning (e.g., [Bishop, 2006; Friedman et al., 2001; Murphy,
2012]) or computer vision (e.g., [Szeliski, 2010; Prince, 2012]).

2.1 Large-Scale Visual Recognition

Without bells and whistles, visual recognition consists of extracting semantic mean-
ingful interpretations from visual data like humans do. Taking Figure 2.1 as an
example, humans can recognize the nature scene from the blurry green background,
localize the birds, note the water splash at the bottom of the picture, and even in-
fer that the image is depicting birds drinking water from some water source like a
river or a lake. This impressive skill is the result of many years of biological evolu-
tion of one of our most important sensing devices, the eyes, and interpreting device,
the brain. Likewise, visual recognition focus on developing computational tools to
mimic such an impressive skill using a camera as sensing device and computers as
interpreting device.

13
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14 Background

Figure 2.1: Visual recognition consists of inferring semantic entities in the visual
world using computational tools. Image courtesy of Ballan [2018].

We can summarize this problem as modelling a function f (·) that maps from the
visual data x to the semantic outputs y,

f : x → y. (2.1)

While x can be visual inputs like an image or a video, y can vary from simple image-
level visual concept like “nature scene”, passing through precise localization of se-
mantic entities like the birds positions, to more abstract scene interpretations like
the description, "the birds are drinking water from the river". Therefore, the exact
form and representation of x and y depends on the application. For instance, image
classification models infer discrete image labels, object detectors predict continuous
bounding-box locations, and video captioning algorithms produce textual descrip-
tions from videos.

While the task of inferring semantic outputs y from visual data x is trivial for
humans, it is very hard for computer vision algorithms. It is not obvious how one
might write an algorithm for identifying birds in images due to all possible appear-
ance variations that they may present in the visual world. Figure 2.2 shows exam-
ples of common appearance variations that you may encounter in the visual world.
Therefore, instead of try to model the function f (·) by a conventional algorithm, as
we would do to sort a list of numbers, we collect many examples of such a visual
concept and then develop learning algorithms to learn such a concept and recog-
nize this concept in new visual instances. This approach is named as data-driven
approach and consists of the most common approach for visual recognition.

For most of the visual recognition problems, the learning algorithm to be de-
veloped follows the supervised learning paradigm. More specifically, we collect a
dataset of visual data and its respective outputs D = {(xi, yi)}N

i=1, parametrize the
function f (·) in terms of learnable parameters θ (denoted from now on as fθ (·)), and
define a loss function ∆(·, ·) that measures how wrong is our prediction fθ(xi) from
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Figure 2.2: Variations in the visual appearance of semantic concepts. Image courtesy
of Li et al. [2019].

the expected output yi given the visual data xi. Then, the parameters θ are estimated
by minimizing the loss function ∆(·, ·) over the training set D. Mathematically, our
learning algorithm consists of the following optimization problem,

minimize
θ

N

∑
i=1

∆ ( fθ(xi), yi) + R(θ), (2.2)

where the form of the loss function ∆(·, ·) depends on the type of the output y and the
application of interest. For instance, regressing bounding boxes coordinates requires
continuous outputs which are a good fit for the euclidean loss ∑N

i=1 ‖yi − fθ(xi)‖2
2,

while distinguishing between cats, dogs, and people images requires discrete out-
puts which can be easily handled by the log cross-entropy loss ∑N

i=1−logP(yi|xi; θ)
where the probability P(yi|xi; θ) is computed by the softmax function over the out-
puts of our learnable function fθ (·). Furthermore, the above minimization problem
is often solved by gradient based methods [Boyd and Vandenberghe, 2004] where
the gradients are computed using the back-propagation algorithm [Rumelhart et al.,
1988] which requires the loss function and our model to be differentiable with respect
to the learnable parameters θ. The function R (·) is some regularization function to
avoid over-fitting providing also good predictions for visual data instances that are
not in the training set.

We now have all the ingredients to solve a generic visual recognition problem,
with the exception of the accurate formulation of the function fθ (·) also called model,
in a machine learning perspective. Initially, computer vision researchers proposed to
decompose this function in two other functions: a feature extractor and a machine
learning algorithm. The former involves defining what visual features are relevant
to a given task and designing data processing pipelines to extract and encode those
characteristics in an format amenable to the latter learn from and produce the de-
sired semantics outputs. Following these ideas, features extractors like SIFT [Lowe,
2004] and HOG [Dalal and Triggs, 2005] have been employed with machine learning
models like support vector machines [Cortes and Vapnik, 1995] and boosted classi-
fier [Freund et al., 1999] in a wide range of visual recognition tasks [Dollár et al., 2014;
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Viola and Jones, 2001]. However, this strategy requires huge efforts in engineering
and domain knowledge imposing difficulties for many large scale visual recognition
applications.

Recently, aided by the developments in hardware platforms [Nickolls et al., 2008]
and the availability of large scale human annotated datasets [Deng et al., 2009; Lin
et al., 2014; Caba et al., 2015], enormous progress has been made by deep learning
models which has drastically boosted the state-of-the-art performance in many visual
recognition tasks. Basically, these models consists of a cascade of multiple layers of
nonlinear processing units that jointly performs feature extraction and model learn-
ing from pixels to semantic outputs which is also known as end-to-end learning.
Since deep learning models can vary a lot depending on the target application, we
will focus on the explanation of one of the simplest deep learning model for now,
i.e., the multi-layer perceptron neural network (MLP) [Rosenblatt, 1961], and later
present the state-of-the-art models in the applications that are relevant for this thesis.

As shown in Figure 2.3, a standard 2-layers MLP consists of the computation
of two linear transformations followed by non-linear functions that maps the input
visual data to the semantic outputs. Then our model fθ (·) can be described as,

fθ(x) = h2
(
Wᵀ

2 h1
(
Wᵀ

1 x + b1
)
+ b2

)
(2.3)

where W1, W2, b1, and b2 together form the set of learnable parameters θ which
should be estimated as described in Equation 2.2. Likewise, h1 and h2 are called
activation functions. h1 is usually implemented by a sigmoid function, while h2 will
depend again on the desired semantic outputs y and the target application. For in-
stance, regressing continuous bounding-boxes coordinates can be accomplished by a
linear transformation, while predicting discrete labels can be achieved by a softmax
function. According to the universal approximator theorem, these models can ap-
proximate any continuous function on a compact input domain to arbitrary accuracy
provided the network has a sufficiently large number of learnable parameters, suf-
ficient amount of training data and appropriated learning algorithm [Hornik, 1991;
Cybenko, 1989]. However, the assumptions of this theorem are often violated in
practice.

In summary, current visual recognition models following the deep learning ap-
proach interpret the visual world by learning a sequence of over-parametrized non-
linear transformations that maps from visual inputs to semantic outputs. Such an
approach is very convenient compared to the two steps formulation used before by
computer vision practitioners since it requires less domain knowledge. However,
this data-driven approach relays heavily on the abundance of human annotated data
which is problematic and expensive as discussed in Chapter 1. In the next sections,
we discuss details of these supervised deep learning models for the visual recogni-
tion applications relevant for this thesis, while we delay the presentation of existing
strategies to overcome these problems to Section 2.2.
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Figure 2.3: The Multi-layer perceptron neural network (MLP) consists of the com-
putation of two linear transformations followed by non-linear functions (h1 (·) and
h2 (·)) that maps the input visual data to the semantic outputs. In this model, the

learnable parameters θ are W1, W2, b1, and b2.

2.1.1 Object Recognition

We start our discussion about current deep learning models for visual recognition
applications by considering object recognition which is one of the most famous com-
puter vision problems. Typically, it encompasses three different tasks: Object Classi-
fication, object detection and object segmentation. The first consists of assigning one
or more labels to a given image, the second aims to localize objects using bounding
boxes in addition to classify them, and the third refers to the task of predicting a
label for every pixel of the image, producing the localization as well as marking the
extent of every object in the image. Figure 2.4 illustrates these tasks.

In the case of object classification, the most used deep learning models are the
Convolutional Neural Networks (CNNs). Like MLPs, CNNs are feed-forward mod-
els consisting of a sequence of non-linear transformations also called layers. The main
type of these layers is the convolutional layer which applies a linear transformation
(convolution) to its input followed by a non-linear function (e.g., REctified Linear
Unit (ReLU) or sigmoid). The network may also contain other types of layers, such
as pooling layers that are used to downsample the input, dropout layers that try to
prevent overfitting by randomly dropping intermediate outputs, or fully-connected
layers which are essentially the MLP’s layers. The models are usually trained by
stochastic gradient descent and back-propagation as described in previous section.

The exact sequence of layers and their parameters defines the CNN’s architecture.
The first architecture to earn notoriety was the AlexNet proposed by Krizhevsky et al.
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Object Recognition Tasks

Classification Detection Segmentation

Figure 2.4: Illustration of the traditional object recognition tasks: Object Classifica-
tion, object detection and object segmentation. Object classification consists of as-
signing one or more labels to a given image, object detection aims to localize objects
using bounding boxes in addition to classify them, and object segmentation refers to

the task of predicting a label for every pixel of the image.

[2012]. The authors won the ImageNet Challenge in 2012 by a large margin starting
the deep learning era in visual recognition as discussed in Chapter 1. As illustrated
in Figure 2.5(a), the AlexNet is composed by five convolutional layers followed by
three fully-connected layers. It uses Rectified Linear Units (ReLU) as non-linearity
instead the standard sigmoid function. To prevent overfitting, it uses two dropout
layers and data augmentation techniques – during training, the data set is augmented
with random translations, reflections, and patch extractions from the training images.

An important aspect of CNN’s architectures is the number of consecutive layers
also called depth. There is the notion that deeper networks can take more advan-
tage of the hierarchical representation of the visual data allowing to learn more
effective models for visual recognition. Following these ideas, deeper and even
deeper networks have been proposed like VGG [Simonyan and Zisserman, 2014b]
(Figure 2.5(b)) and GoogleNet [Szegedy et al., 2015] which has 16 and 22 layers, re-
spectively. The GoogleNet also introduced the inception module (Figure 2.5(c)), a
set of small convolutions to drastically reduce the number of learnable parameters
attempting to avoid overfitting.

While these deep networks can learn a more rich feature hierarchy and com-
plex functions, they are harder to train due to the well known vanishing gradient
problem [Hochreiter et al., 2001]. During training, the gradients in the first layers
of the network approach zero as the network architecture gets deeper which slows
down the learning of the earlier layers. In order to circumvent such a problem, skip
connections (Figure 2.5(d)) have been used by CNNs architectures such as Highway
Network [Srivastava et al., 2015b], ResNet [He et al., 2016], and DenseNet [Huang
et al., 2017]. These CNN architectures can have 1,000 layers and produce impres-
sive results. For instance, the ResNet outperformed human experts in the ImageNet
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(a) AlexNet Architecture.

(b) VGG Architecture.

(c) Inception module. (d) Skip Connection.

Figure 2.5: Most common CNN architectures used in visual recognition applica-
tions. Figures 2.5(a), 2.5(b), 2.5(c), and 2.5(d) are courtesy of Krizhevsky et al. [2012],
Simonyan and Zisserman [2014b], Szegedy et al. [2015], and He et al. [2016], respec-

tively.
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Challenge 2015. Another CNN component that is worth to mention is batch nor-
malization [Ioffe and Szegedy, 2015] which normalizes the inputs of intermediate
layers by adjusting and scaling the activations using batch statistics. This component
speeds up the network training, in addition to slightly reduce the overfitting.

The methods developed in this thesis are based on CNN models following the
aforementioned architectures. For instance, the visual permutation learning model
described in Chapter 3 uses a Siamese architecture [Bromley et al., 1994; Chopra
et al., 2005] whose each subnetwork follows the AlexNet, while the neural algebra of
classifiers described in Chapter 5 uses a feature extractor network based on the VGG
variant.

While object classification only focus on classifying images according to different
object classes, object detection aims to localize in addition to classify each instance of
object in a image using a tight rectangle called bounding box. Due to the similarity
between these two problems, object detection models are usually implemented as the
classification of multiple locations and scales of the input image [Felzenszwalb et al.,
2010; Dollár et al., 2014]. Following these ideas, the Region Convolutional Neural
Network (R-CNN) detector [Girshick et al., 2014] combines the selective search re-
gion proposal method [Uijlings et al., 2013], AlexNet feature extraction and linear
SVM classifiers. It also uses a per-class bounding box regression mechanism which
refines the detections to tightly enclose the object instances. In order to train such a
model, the authors first pretrain the CNN feature extractor in the ImageNet dataset
for object classification, then they fine-tune the CNN and train the SVM classifiers in
a detection dataset. The R-CNN detector earned notoriety by improving the state-of-
the-art performance significantly on many modern object detection benchmarks.

Despite the impressive results, the R-CNN detector presents many inefficiencies
at training and test time. It requires to run the CNN’s forward-pass on about 2000
regions proposals per image which is very computationally expensive. In addition,
the multi-stage training is not convenient. Inspired by the SPPNet [He et al., 2015],
Girshick [2015] proposes the Fast R-CNN detector introducing the Region of Interest
pooling layer (RoIPool) which extracts a fixed-length feature vector for each proposal
directly from the corresponding region of the convolutional map reducing the num-
ber of CNN’s forward-pass per image for only one. It also simplifies the training
process by replacing the SVM classifiers by fully connected layers forming a two
head structure with the bounding box regressor. Such a structure allows the model
to be trained for classification and localization jointly using a Multi-Task loss. The
transfer learning experiments described in the Section 4.3 of Chapter 4 uses the Fast
R-CNN model to perform object detection.

Inspired by the success of end-to-end learning approaches in related problems,
Ren et al. [2015] propose the Faster R-CNN detector by introducing the Region Pro-
posal Network (RPN) into the Fast R-CNN model as shown in Figure 2.6(a). More
specifically, the object proposal method is replaced by the Region Proposal Network
which is another CNN that slides over the last feature map to determine whether
a region is an object or not. It predicts “objectness” scores, bounding boxes coordi-
nates, and bounding boxes dimensions for K anchor boxes which are then used to
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(a) Faster R-CNN - Two-stage approach (b) Yolo - One-stage approach

Figure 2.6: Fast R-CNN [Girshick, 2015] and YOLO [Redmon et al., 2016] deep learn-
ing frameworks for object detection. Figures 2.6(a) and 2.6(b) are courtesy of Girshick

[2015] and Redmon et al. [2016], respectively.

train the rest of the model which is essentially its predecessor the Fast R-CNN model.
The Faster R-CNN framework is an end-to-end deep learning framework for object
detection and presents slightly better performance than the Fast R-CNN.

The aforementioned deep learning frameworks for object detection follow a two-
stage strategy where regions of interest are first extracted and then classified. Despite
the accuracy of these methods, they are extremely slow for real-time applications pro-
cessing only about 6 frames per second (FPS) on a GPU. In order to speed up deep
learning-based object detectors the one-stage strategy was developed concurrently
by Liu et al. [2016] and Redmon et al. [2016]. These algorithms predict bounding
boxes and class probabilities all at once from a given input image. More specifically,
the Single-Shot Detector (SSD) [Liu et al., 2016] predicts a large number of bound-
ing boxes and class probabilities, like the anchor boxes in the Faster R-CNN, using
feature maps from different convolutional layers of the backbone CNN. Then, the
Non-Maximum Suppression method is used to keep the most relevant detections.
Differently, as shown in Figure 2.6(b), the You Only Look Once (YOLO) [Redmon
et al., 2016] divides the input image into a regular grid, predicts different bounding
boxes and confidence scores within each grid cell, selects the most relevant bounding
boxes using their intersection over union (IoU) and predicted confidence scores, and
assigns class probabilities for these most relevant detections. Just to have an idea
of the level of speed up brought by these models, YOLO runs at 45 FPS on a GPU
and their light version which uses a smaller CNN architecture can run at impressive
155 FPS on a GPU. Other versions of this model was developed later to deal with
larger number of object classes [Redmon and Farhadi, 2017] and to make the predic-
tions more accurate [Redmon and Farhadi, 2018], but always keeping the real-time
performance.
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Figure 2.7: Architecture of Fully Convolutional Networks (FCN) for image segmen-
tation. Image courtesy of Long et al. [2015].

As mentioned earlier, object segmentation aims to interpret images at pixel level,
i.e., the objective is to assign a class label for every pixel of the input image. Like
in detection problems, the initial deep learning approaches for segmentation were
just adaptations of classification models [Ciresan et al., 2012]. More specifically, they
assign labels to pixels by classifying the image patch around it. The main reason to
adopt this approach was because CNN’s with fully connected layers can only handle
fixed size inputs and outputs. In order to circumvent such a limitation and pro-
vide an efficient model, Long et al. [2015] propose the Fully Convolutional Network
(FCN), a deep learning model for dense prediction tasks like object segmentation.
This model does not have fully-connected layers and it is able to process images of
any size in a single shot producing segmentation maps in a more efficient way than
the patch classification approach. In addition, the authors introduced deconvolu-
tion layers to upsampling feature maps and skip connections to refine the predicted
segmentation maps. The architecture details of the FCN is shown in Figure 2.7 and
this model is used in the segmentation experiments described in the Section 4.3 of
Chapter 4.

Focusing on biomedical image segmentation, Ronneberger et al. [2015] extends
the FCN architecture aiming to reduce the amount of training images and to im-
prove the fine details in the predicted segmentation maps. The authors propose the
U-Net, a encoder-decoder architecture for image segmentation. The encoder part,
named contracting network, reduces the dimensions of the input image by extract-
ing many feature maps of decreasing resolution using convolutional layers. On the
other hand, the decoder part, named expanding network, consumes these low resolu-
tion feature maps producing fewer high resolution feature maps using deconvolution
layers. Finally, a 1x1 convolutional layer processes these high resolution feature maps
to predict the final segmentation result. The U-Net also employ skip connections to
allow the decoder leverage the high resolution feature maps from earlier layers of the
encoder network producing more precise segmentation results.
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The U-Net architecture is well accepted by the community and has motivated
many other works recently. As examples, Lin et al. [2017] propose the the Feature
Pyramid Network (FPN) which uses similar architecture than U-Net, but predicts
segmentation maps at different layers of the decoder network denoted by the authors
as the top-down pathway. Zhao et al. [2017] develop the Pyramid Scene Parsing Net-
work (PSPNet) which aims to better learn the global context of a scene by introducing
dilated convolutions [Yu and Koltun, 2015] and the Pyramid Pooling Module in the
encoder part. While the dilated convolutions allow to increase the size of the recep-
tive field without decreasing the spatial dimensions of the output feature maps, the
Pyramid Pooling Module allows to analyse the image at different scales by process-
ing feature maps pooled at different scales. Pursuing similar goals, different versions
of the DeepLab model [Chen et al., 2018, 2017] make use of the fully connected pair-
wise CRF by Krähenbühl and Koltun [2011] as a separated post-processing step to
capture long term dependencies between pixels in order to produce refined segmen-
tation results. These models also use a multi-scale approach similar to the PSPNet’s
Pyramid Pooling Module but exploring dilated convolutions.

Up to the present moment, we have discussed object classification, detection and
segmentation in isolation. However, it is evident that these tasks have a lot in com-
mon. For instance, a good segmentation algorithm has to be able to localize and
classify every object in a image in order to produce a good segmentation map. Fol-
lowing these ideas, He et al. [2017] propose the Mask R-CNN, a deep learning model
for instance segmentation which consists of predicting segmentation masks for ev-
ery instance of objects depicted in a image. Note that such a problem differs from
traditional object segmentation because it differentiate object instances. In order to
tackle the instance segmentation problem, the Mask R-CNN extends the Faster R-
CNN object detector by adding a branch for predicting an object mask in parallel
with the existing branches for predicting bounding box coordinates and object class
probabilities. These branches and the whole model are trained using a multi-task
loss which tries to solve these complementary tasks jointly leading to better models
on each individual task.

2.1.2 Action Recognition

Like object recognition, action recognition is also a fundamental task in computer
vision [Kang and Wildes, 2016; Herath et al., 2017]. It refers to the act of classifying or
localizing the execution of complete actions in videos. However, different from object
recognition, such a problem requires thorough analysis of the temporal evolution of
semantic entities in addition to the understanding of the appearance of static images
in isolation. Consider the two videos (visualized as sequences of frames) in Figure 2.8
as an example. While we can only predict that someone is swimming in both videos
by analysing the frames in isolation due to the recognition of semantic entities like
water and human body, we can distinguish front crawl from breaststroke swimming
styles by analysing the temporal evolution of the frames and noting the differences
between the periodic motion patterns of the arms. Therefore, action recognition
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Front Crawl

Breaststroke

Time

Figure 2.8: The influence of temporal information on action recognition tasks. While
we can only predict that someone is swimming in both videos by analysing the
frames in isolation due to the recognition of semantic entities like water and human
body, we can distinguish front crawl from breaststroke swimming styles by analysing
the temporal evolution of the frames and noting the differences between the periodic

motion patterns of the arms. These images are courtesy of Ghosh [2018].

systems should reason about temporal information depicted in videos in order to
accurate predict actions.

The most straightforward way to incorporate temporal information into deep
learning models is to extend Convolutional Networks to the temporal domain by us-
ing 3D convolutions as basic building blocks instead of 2D convolutions. In this way,
the 3D convolutions can extract both spatial and temporal features from adjacent
frames. Figures 2.9(a) and 2.9(b) illustrate the difference between these operations.
This approach also called space-time networks was first used for action recognition
by Ji et al. [2010] and latter improved by Tran et al. [2015] using modern CNN ar-
chitectures as backbone and large scale human annotated datasets for training. The
main drawback of 3D CNNs is the large number of learnable parameters provoked by
the extensive use of 3D convolutions making these models susceptible to overfitting
and hard to train. In order to circumvent such a problem, Carreira and Zisserman
[2017] propose to inflate very deep 2D CNNs for image classification into 3D CNNs
by repeating 2D convolutional filters along the time dimension, allowing the net-
work to reuse 2D filters pretrained on larger and richer static images datasets like
ImageNet. Their model is known as I3D and we use it as primitive action classifiers
in the action recognition experiments in Section 6.3.2 of Chapter 6. Other more elab-
orated approaches to transfer the knowledge between 2D CNNs and 3D CNNs have
been propposed in [Qiu et al., 2017; Varol et al., 2018].

According to the two-stream hypothesis in visual perception [Goodale and Mil-
ner, 1992], object attributes such as appearance, color and identity are handled sepa-
rately from its motion and location information by two different streams, the Ventral
Stream and the Dosaral Stream, respectively. Inspired by these ideas, Simonyan and
Zisserman [2014a] introduce another way to model visual appearance and temporal
information in action recognition using convolutional neural networks named mul-
tiple stream networks. Their so called Two-Stream model, shown in Figure 2.9(c),
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b) 3D Convolutiona) 2D Convolution c) Two-Stream Network d) LRCN

Figure 2.9: Deep learning approaches for action recognition. Figures 2.9(a) and 2.9(b)
compares 2D and 3D convolution operation. Figure 2.9(c) shows the two-stream ar-
chitecture proposed by Simonyan and Zisserman [2014a], and Figure 2.9(d) shows
the temporal pooling approach using LSTM proposed by Donahue et al. [2015]. Fig-
ures 2.9(a) and 2.9(b) are courtesy of Tran et al. [2015], while Figures 2.9(c) and 2.9(d)

are courtesy of Yue-Hei Ng et al. [2015] and Donahue et al. [2015], respectively.

consists of a two parallel CNNs for processing raw video frames and optical flow
fields separately. These two streams are then fused together by averaging their soft-
max scores. Since such a fusion schema is not appropriate for learning long term
temporal information, Feichtenhofer et al. [2016] propose to extend the two-stream
model allowing fusion at an intermediate layer. Aiming at the same goal, Wang
et al. [2015] propose to aggregate dense trajectories [Wang and Schmid, 2013] traced
over convolutional feature maps of the two-stream, Yue-Hei Ng et al. [2015] inves-
tigate temporal feature pooling, and Girdhar et al. [2017] propose the ActionVLAD
pooling layer that aggregates convolutional feature descriptors in different image
portions and temporal spans. There are also works like [Wu et al., 2015a; Zolfaghari
et al., 2017] which investigate other streams of data processing like audio signals and
human body pose information, respectively.

Another approach is to use temporal pooling or aggregation to capture temporal
information in a video. Donahue et al. [2015] extract visual features for every frame
in a video using a 2D CNN and capture the temporal evolution of these features
using a LSTM as shown in Figure 2.9(d). Yue-Hei Ng et al. [2015] investigate this
approach in depth comparing different ways to perform temporal aggregation using
LSTMs on top of 2D CNN features. Wu et al. [2015b] extend this CNN-LSTM schema
by using a two-stream network to extract visual appearance and motion features and
bidirectional LSTM to model long term temporal dependencies. Using other formu-
lations different from LSTMs to capture and represent the temporal information in
video, Fernando et al. [2015b] and its variants [Fernando and Gould, 2016; Fernando
et al., 2016] use a learning-to-rank approach and Cherian et al. [2017] propose to
represent sequences of frames as a subspace. In order to constraint the video rep-
resentation to capture useful information, in addition to the temporal information,
Wang et al. [2018] propose to use the decision boundaries of a SVM classifier that
separates data features from independently sampled noise, and Wang and Cherian
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[2018] extend such an approach using adversarial perturbations to model the data
dependent noise generation.

The aforementioned models are designed solely for predicting action labels in
videos. However, temporal action localization which consists of predicting the start
and end frame of complete action instances have also been studied by the com-
puter vision community. Like object detection models, early approaches address
this task by applying temporal sliding window followed by classifiers to classify the
action within each window [Ni et al., 2016; Yuan et al., 2016], then these solutions
evolved to region proposal approaches where a hand-crafted algorithm is used to
generate generic action proposal that are subsequently classified into different ac-
tion categories [Caba Heilbron et al., 2016; Escorcia et al., 2016], and recently deep
learning end-to-end approaches have been developed for this problem. In this di-
rection, we would like to highlight the works of Xu et al. [2017b] which adapted the
Faster R-CNN object detector for temporal action localization, Dai et al. [2017] intro-
duce temporal context in the prediction of action proposals, and Chao et al. [2018]
propose modifications on these previous approach to handle the large variation in
action instances duration. Moving forward, there also exists a large body of work
on spatio-temporal action localization which focus on localizing spatially and tem-
porally complete action instances in videos, in addition to classify them [Gkioxari
and Malik, 2015; Kalogeiton et al., 2017]. Since we only make use of action classifiers
in the development of the inference algorithm for compositional activity recognition
in Section 6.2 of Chapter 6, a detailed presentation of these localization methods in
beyond the scope of this thesis.

2.1.3 Image ranking

In order to finish our brief presentation of current deep learning models for dif-
ferent visual recognition applications, we now discuss image ranking. The goal of
image ranking is to order a collection of images according to some predefined crite-
rion which can range from visual attributes to natural language queries. Figure 2.10
shows examples of this task. This topic has been explored by the scientific com-
munity with applications in information retrieval [Yang and Hanjalic, 2010], active
learning [Liang and Grauman, 2014], zero-shot learning [Parikh and Grauman, 2011]
and person re-identification [Wang et al., 2016]. In order to solve such a task, su-
pervised learning-to-rank algorithms are usually employed. As all machine learning
methods that follow the supervised paradigm, supervised learning-to-rank methods
learn to order new image instances from a training set of correctly ordered sequences
of images according to some criterion.

Supervised learning-to-rank algorithms can be categorized by the way they pro-
cess the training and testing sequences. Point-wise methods process each element of
the sequences individually. They first use a classifier or regressor based algorithm to
estimate how relevant a single element is for a given criterion, then the final ranking
is obtained by sorting all elements by these scores. Following this approach, Cram-
mer and Singer [2002] propose a rule based algorithm, Shashua and Levin [2003] use
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Textual Query: “Fast and expensive cars”

Visual Attribute: Convertible

Collection of Images Relevant Non-relevant

Figure 2.10: Example of image ranking problem. The goal of image ranking is to
order a collection of images according to some predefined criterion which can range
from visual attributes (e.g., Convertible) to natural language queries (e.g., “Fast and

expensive cars”).

multiple parallel hyperplanes, Cossock and Zhang [2006] explore regression errors,
and Li et al. [2008] use a gradient boosting tree algorithm to produce these relevance
scores. Point-wise methods are simple, easy to train, but prone to over-fitting.

Pair-wise methods process pairs of elements in the sequences at a time during
training and testing. They essentially formulate the ranking task as classification of
pairs into correctly and incorrectly ordered pairs. The final ranking is obtained by
performing pair-wise comparisons between the elements in a given input sequence.
As good examples of these methods, Herbrich et al. [2000] propose the large margin
formulation for ranking problems known as RankSVM, Burges et al. [2005] develop a
neural network model and training schema named RankNet, Souri et al. [2016] pro-
pose a Siamese CNN architecture and ranking loss that takes ties between elements
into account, Singh and Lee [2016] design a CNN based model able to localize, in
addition to compare images according to visual attributes, and Li et al. [2018] pro-
vide a more interpretable ranking model using a probabilistic framework. Pair-wise
methods work better in practice than point-wise methods, because predicting relative
order is closer to the nature of ranking than predicting relevance scores. However,
they are limited to only explore the information depicted in training pairs.

List-wise methods process entire sequences at once by optimizing thoroughly de-
signed objective functions over them. They essentially optimize ranking quality met-
rics like normalized discounted cumulative gain (NDCG), mean average precision
(MAP), and mean reciprocal rank (MRR) using some sort of surrogate objective or
derivative-free optimization method, since these metrics are not differentiable. Taylor
et al. [2008] propose a smooth approximation for NDCG, Xu and Li [2007] develop
an adaptive boosting algorithm to optimize NDCG and MAP using an ensemble of
“weak rankers”, Mohapatra et al. [2018] propose a quick-sort flavored optimization
algorithm, and Engilberge et al. [2019] propose to use an additional neural network
to perform the rank step of the computation of these metrics making them differ-
entiable. List-wise methods are more computationally expensive, yet very effective
because they are able to explore all the structural information present in the training
sequences.
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There is still a fourth category of supervised learning-to-rank methods positioned
between pair-wise and list-wise methods that explores subsequences in order to pro-
duce a global ranking function. For instance, Fernando et al. [2015a] propose the
MidRank model which explores multiple pair-wise relations within subsequences at
the same time optimizes a list-wise ranking loss. Likewise, the visual permutation
learning model proposed in Chapter 3 belongs to this family of rankers, however,
our method is CNN based and is able to learn image representations and ranking
function jointly from the pixel data.

2.2 Visual Recognition With Minimal Supervision

As discussed in Chapter 1, learning with minimal human supervision is a funda-
mental step towards the development of computer vision algorithms as capable as
the human visual system. Due to its importance, there exists a rich literature on
methods and practices aiming to achieve this goal. We dedicate the rest of this chap-
ter to review existing works in the literature that like us aim to learn visual recog-
nition systems with minimal human supervision. We start by enumerating existing
learning paradigms alternative to the dominating fully supervised approach which
is described in Section 2.1. Then, we focus our discussion on the weakly supervised
learning approach, since it guides most of the methods developed in this thesis. In
order to provide a complete literature review, we finish this section by discussing
other forms of human free supervision that have been extensively used recently.

2.2.1 Standard Non-Supervised Learning Paradigms

As discussed before, the supervised learning paradigm is the mainstream in visual
recognition despite its dependency on the availability of human annotated datasets.
However, in the literature, there are other learning paradigms that aim to overcome
such a limitation. The current section reviews these learning paradigms, as well as
their applications in visual recognition.

Unsupervised Learning. As widely stated in machine learning books, unsuper-
vised learning techniques explore the underlying structure of unlabelled data to
learn mappings between inputs and outputs of a system [Bishop, 2006]. Besides
not requiring human annotated datasets which are very expensive to collect and
maintain, these techniques have many other advantages over fully supervised ap-
proaches, e.g., they are less sensitive to data bias and inconsistencies originated by
the labelling process. Due to these reasons, it has been widely used in computer
vision applications involving data clustering, compression and representation. For
instance, the classic Autoencoder framework [Baldi and Hornik, 1989; Hinton and
Zemel, 1994] has been used for image representation [Vincent et al., 2008, 2010], in-
cremental learning [Aljundi et al., 2017], 3D orientation learning [Sundermeyer et al.,
2018] and image super resolution [Yu and Porikli, 2017].
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In spite of being a very generic approach, unsupervised learning methods im-
poses several challenges for visual recognition applications caused by the following
“chicken-and-egg problem”: How to search for a object before knowing what it looks
like? How to represent an activity without knowing how it happens? How to esti-
mate a pose if we do not know what are the articulations? As a consequence, these
techniques are discouraged in many real world visual recognition problems and usu-
ally exchanged by semi-supervised or weakly supervised methods.

Semi-Supervised Learning. Semi-supervised learning techniques were initially pro-
posed as a way to provide strong generalization for supervised models by utilizing
abundant unlabelled data [Chapelle et al., 2006]. However, we can also say that these
techniques attempt to overcome the aforementioned “chicken-and-egg problem” by in-
troducing a small labelled dataset which provides guidance to the learning process
without incurring in excessive data curation cost or other supervised learning in-
herent problems. For instance, Lee [2013] first learns classifiers for the concepts of
interest guided by the labelled data and then explores regularities in the unlabelled
data to refine such a model using pseudo-labels. Likewise, Haeusser et al. [2017]
perform similar refinement by learning associations between labelled and unlabelled
samples in the feature space, while Sajjadi et al. [2016] regularize the initial model by
introducing an unsupervised regularization term to push the decision boundaries to
less dense areas of decision space and to enforce mutual exclusivity of classes.

Along the years, semi-supervised learning methods have achieved good per-
formance in different visual recognition tasks [Rasmus et al., 2015; Tarvainen and
Valpola, 2017], but there were always concerns whether the initial supervised model
could bias the exploration of the unsupervised data to a wrong direction in which
mistakes are reinforced instead of fixed. Very recently, Oliver et al. [2018] endorse
these concerns by showing that traditional techniques for semi-supervised learning
can be outperformed by supervised baselines using well-tuned hyper-parameters or
transfer learning techniques. The authors also pointed out that the performance of
these methods can degrade substantially when the unlabelled dataset contains out-
of-distribution examples.

Weakly Supervised Learning. On the other hand, weakly-supervised learning meth-
ods focus on applications that have been successfully tackled by supervised learning
approaches, but they only explore a “weaker” form of supervision. Such a “weak
supervision” should exist in abundance, be easily collected, or be computed on-the-
fly in order to these approaches be useful. These methods allow us to learn object
detection models without the laborious bounding-box annotations but using only
image tags [Shi et al., 2017] and to derive object segmentation models using the same
image-level labels instead of the even laborious pixel-wise annotations [Pathak et al.,
2014]. In the video domain, these techniques are even more important since it is much
convenient to learn temporal action segmentation models from sequences [Richard
et al., 2018b] or sets [Richard et al., 2018a] of actions that can be extracted from video
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transcripts than from dense frame-wise annotations used by the supervised state-of-
the-art methods [Carreira and Zisserman, 2017]. Therefore, these techniques are very
convenient as well as effective in practice.

In this dissertation, we also follow the weakly-supervised learning paradigm by
proposing methods that explore weak forms of supervision obtained from the struc-
ture and priors existent in the visual world. As examples, we exploit the spatial
structure and context depicted in images to learn image representations without
annotated data in Chapter 4, while we perform zero-shot image classification by
using only visual primitive labels in Chapter 5. However, it is also common to
perceive a mix of these approaches in our applications as well as in other works
in the literature. For instance, we use additional supervised methods and human
annotated datasets in the transfer learning experiments in Chapter 4 resulting in a
semi-supervised approach. In the literature, Hu et al. [2018] propose an object in-
stance detection and segmentation model able to segment 3000 visual concepts by
training the Mask R-CNN framework using a mix of human annotated bounding-
boxes, human annotated segmentation masks and induced masks from object class
latent representations, resulting in a mix of supervised, semi-supervised and weakly-
supervised approaches. Therefore, despite this very explanatory learning taxonomy,
mixing these forms of supervision seems the most promising research direction to
minimize the amount of human supervision required by visual recognition systems.

2.2.2 Variants of Weakly Supervised Learning

Weakly supervised learning is also an umbrella term covering a variety of approaches
that attempt to construct predictive models by learning with weak supervision. Just
to have a taste of the coverage of this term, some authors consider semi-supervised
learning a form of weakly supervised learning with incomplete labels [Zhou, 2017].
In this section, we highlight the main variants in weakly supervised learning methods
emphasizing the difference between the weak form of supervision used by them.

“Weaker” Annotations. As observed by Bearman et al. [2016a], related visual recog-
nition problems like object classification, detection and segmentation require related
annotations with an increasing level of detail and production cost like image-level
labels, object bounding boxes and pixel-wise segmentation masks, respectively. Ac-
cording to the authors, human annotators take 1 second per instance on average
to assign object labels to images, while they take 10 times more to provide objects
precise localization and 78 times more to provide objects extent. Therefore, it is
appealing to use less expensive annotations at training time to perform a more com-
plex but related problem at test times. Following these ideas, Shi et al. [2017] and
Pathak et al. [2014] propose to perform object detection and segmentation, respec-
tively, using only image-level labels. Likewise, in the video domain, Richard et al.
proposed to perform temporal action segmentation by assigning labels to frames us-
ing a model trained on sequences [Richard et al., 2018b] or unordered sets [Richard
et al., 2018a] of actions which are easily extracted from the video transcripts. De-
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spite the convenience of these approaches, their performance is considerably lower
than the performance of their fully supervised counterparts, although this gap has
gradually reduced over the years.

Self-Supervised Learning. In addition to cheap forms of human supervision, we
can also leverage the visual data itself to perform weakly supervised learning. More
specifically, the visual world depicted in images and videos have structural informa-
tion that can be used to train visual recognition systems without human supervision.
For instance, scene context [Doersch et al., 2015], regularities between shapes and col-
ors [Noroozi and Favaro, 2016; Zhang et al., 2016; Larsson et al., 2016], and low-level
motion cues [Wang and Gupta, 2015; Jayaraman and Grauman, 2015; Pathak et al.,
2017] have been used to learn unsupervised image representations. In Chapter 4, we
employ the visual permutation learning framework developed in Chapter 3 in the
same task and we provide a more in-depth discussion about these related methods
in Section 4.1. The temporal coherency of colors in videos have been used to learn ob-
ject tracking models [Vondrick et al., 2018]. Simple robot and object interactions have
been used to learn the physics behind robotic manipulation [Agrawal et al., 2016].
Despite there exist similar strategy on the literature [Mikolov et al., 2013; de Sa and
Ballard, 1993], this learning paradigm has been renamed as self-supervised learning
and attracted a lot of attention recently. The techniques following this paradigm usu-
ally define auxiliary tasks whose the solutions rely on the same visual cues than the
solutions of a target task. Consequently, a model trained on the auxiliary task can
also solve the target task with minimal modifications. A major drawback of such an
approach is the required domain knowledge to propose and setup these auxiliary
tasks avoiding solutions that are not useful for the target task.

Webly Supervised Learning. In a similar fashion, the web data can be seen as
human-free form of weak supervision. Researchers have pushed hard to be able to
learn visual recognition systems from the enormous amount of visual data online.
Early works focused on building large datasets with minimal supervision by exploit-
ing image search engines [Fergus et al., 2010; Schroff et al., 2011; Li and Fei-Fei, 2010],
while more recent ones propose algorithms to handle the noise and bias existent in
the web data by employing clustering and outlier detection techniques [Golge and
Duygulu, 2014], curriculum learning [Chen and Gupta, 2015], and attention mecha-
nisms [Zhuang et al., 2017], just to name a few. Since the web data are constantly
increasing and changing, there are also initiatives to develop autonomous learning
systems that continuously increase and update their knowledge base [Divvala et al.,
2014; Chen et al., 2013]. A good example of what can be accomplished by such an ap-
proach, the system named NEIL collected an ontology of 1152 object categories, 1034
scene categories and 87 visual attributes after being continuously running for 2.5
months [Chen et al., 2013]. However, despite these webly supervised systems have
seen orders of magnitudes larger number of images, their performance has never
matched up against contemporary methods that receive extensive supervision from
humans. On the other hand, they have shown very promising results when used as a
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large-scale unsupervised pretraining and transfer learning approach [Mahajan et al.,
2018].

2.2.3 Data Generation Approaches

Due to the rich literature, simplicity and better performance presented by supervised
methods, researchers have investigated ways to efficiently curate visual recognition
datasets in order to train supervised models for a vast range of visual recognition
application. Consequently, in the last years, we have seen the data curation process
evolve from a human-driven operation (first performed by domain experts and later
by crowd-sourcing mechanisms), passing through web data automatic collection as
discussed before, to a research field aiming at automatically producing very large
datasets spanning a representative amount of the visual world for the task of interest.
In such a research field, there are three main approaches: Synthetic data generation,
data augmentation techniques, and data automatic annotation.

Learning From Synthetic Data. Learning from synthetic data consists on generat-
ing images or videos depicting the visual concepts of interest and their variations
to enable training of supervised machine learning models that will be used at test
time to recognize new instances of these concepts in real images and videos. Aided
by developments in computer graphics, synthetic data can be cheaply and efficiently
generated for a vast range of application. For instance, Dosovitskiy et al. [2015]
trained an optical flow estimation model using synthetically generated images of
moving chairs, Peng et al. [2015] tackle object detection by rendering 3D objects with
different object/background texture and color features, Fanello et al. [2014] render
synthetic infrared images of hands and faces to predict depth, Gaidon et al. [2016]
have released the Virtual KITTI dataset which allows studies in multi-object track-
ing by leveraging synthetically generated videos of cars, Rahmani and Mian [2016]
strive for 3D action recognition by leveraging synthetically generated videos in novel
viewpoints, and Tokmakov et al. [2019] learn a neural network based model for seg-
menting objects in videos using synthetic data of moving objects. In summary, this
direction seems to be very promising, especially in conjunction with deep architec-
tures which can leverage large amounts of data to perform accurate prediction.

Although there exists a vast amount of works produced in this direction, us-
ing machine learning models trained only on synthetic data, the majority of them
can not accomplish results comparable to supervised models trained on real data
[Movshovitz-Attias et al., 2016]. The main reason for that is the well known reality-
gap: Neural networks trained on only synthetic data often fail to generalize to real
images. In order to bridge this reality gap, researchers have used auxiliary real im-
ages and other techniques to improve its performance on real images or videos. For
instance, Shrivastava et al. [2017] and Bousmalis et al. [2017] propose to use gen-
erative adversarial models to generate realistic images from synthetics ones during
training, while Tobin et al. [2017] and Barbosa et al. [2018] use domain adaptation
strategies to adapt the model predictions from synthetic to the realistic domain at
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testing time. These works have provided significant performance gains [Su et al.,
2015; Sadeghi and Levine, 2016] and made synthetic data generation a feasible data
source for some visual recognition problems.

Data Augmentation. The process of data generation of photo-realistic images or
videos can be very computationally expensive for some tasks, e.g., action recogni-
tion may require to run heavy game simulators as described in [Roberto de Souza
et al., 2017]. Furthermore, we already have large scale datasets of real images and
videos for many visual recognition applications like object detection [Lin et al., 2014]
and action recognition [Caba et al., 2015]. Therefore, it is plausible to use synthetic
data generation procedures to augment the existing datasets allowing to train more
capable models for visual recognition. Following these ideas, Varol et al. [2017] ren-
der 3D humans in different real scenes and use this data for pose estimation, Gupta
et al. [2016] automatically add text to natural scenes in a manner compatible with
the scene geometry in order to learn an efficient text detector, while Dwibedi et al.
[2017] use real images of both objects and backgrounds to compose new scenes from
the existing ones to train object detectors. These approaches combining real and syn-
thetic data can achieve very good results and improve the performance of existing
models on real data.

Automatic Annotation. As discussed before, the annotation process to curate visual
recognition datasets can be very time consuming like drawing a tight bounding box
around every object of interest in a image for object detection or labeling every pixel
of a image for semantic segmentation. In order to speed up this process, researchers
have also proposed efficient ways to produce these annotations by exploring differ-
ent computational tools or even machine learning models trained on smaller and
simpler data. As examples, Papadopoulos et al. [2014] propose to track the eyes
movement of annotators to automatic produce rough bounding boxes to train object
detectors, Papadopoulos et al. [2016] use the human feedback to improve the quality
of weak detectors, Bearman et al. [2016b] and Papadopoulos et al. [2017] reduce the
annotation effort from large image regions to only points of interest to train object
detection and segmentation models, Castrejón et al. [2017] and Acuna et al. [2018]
provide an annotation tool that uses a machine learning model to infer the vertices
of the polygon outlining the object in a given image crop which is subsequently used
for training object segmentation models, and Xiong et al. [2019] and Croitoru et al.
[2019] propose algorithms able to jointly learn foreground object segmentation mod-
els and automatic data annotation procedures from unlabeled videos. In summary,
these approaches still rely on supervised models for visual recognition, but provides
an efficient way to produce human annotated data to feed them.

2.2.4 Exploring External Sources of Supervision

In the era of big data, we should not restrict ourselves only to vision datasets. We
instead should explore the plethora of information existent in different domains and
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modalities to reduce the amount of human supervision used to train visual recog-
nition systems. Following these ideas low-shot, cross-modal and transfer learning
techniques have attracted a lot of attention of the research community recently. They
present good results on reducing the amount of labelled data and increasing the
number of visual concepts that can be recognized by visual recognition models.

Few, One, And Zero-Shot Learning. Few, one or zero shot learning methods focus
on solving a given task using few, one or even any example of that task at training
phase. Taking zero-shot learning as example, Lampert et al. [2009] recognize new
object categories, Gan et al. [2016] predict novel human actions, and Wang et al.
[2019] generate out-of-domain video captions without training instances supporting
these tasks. As suggested before, these models accomplish such a challenging task
by exploring some external source of information like object–attributes relationships
[Bucher et al., 2016; Zhang et al., 2017a], verb-attribute induction [Zellers and Choi,
2017], knowledge bases [Lei Ba et al., 2015; Wang et al., 2019], word embedding
learned on a large corpus [Socher et al., 2013; Xu et al., 2017c], and textual descrip-
tion from web data [Niu et al., 2018; Habibian et al., 2017]. Therefore, these models
attempt to overcome the closed world assumption made by the fully supervised ap-
proaches, allowing the visual recognition of new visual concepts without additional
data annotation, but relying on some external source of information.

Aiming at the same goal, in this thesis, Chapters 5 and 6 propose a compositional
model for recognizing unseen objects and activities in visual data, respectively. How-
ever, these unseen visual concepts are expressed by a a far more expressive language
than simple labels and a far less ambiguous language than natural language queries.
We also do not use any external source of information, since we explore the com-
positionality in the visual domain, such as co-occurrences and dependence of visual
attributes.

Cross-Modal Learning. Likewise, cross-modal learning refers to any kind of learn-
ing that involves information obtained from more than one modality. In the context
of visual recognition, we have seen works exploring thermal images [Xu et al., 2017a]
for robust pedestrian detection, depth map for object recognition [Hoffman et al.,
2016], and audio signals for representation learning [Owens et al., 2016]. These works
focus on transfer the knowledge contained in non-visual modalities like audio signals
to the visual recognition models providing robust predictions, in addition to reduce
the need for large human annotated datasets. Another form or cross-modal learn-
ing that has attracted a lot of attention recently are vision–language models. They
allow to recognize visual concepts described by textual sentences, consequently they
scale up the number of visual concepts that can be recognized to the richness of our
natural language. For instance, Hu et al. [2016a] can segment objects, Li et al. [2017]
can track visual concepts , Hendricks et al. [2017] can localize actions, and Shao et al.
[2018] can retrieve movies from natural language queries.
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Transfer Learning. Transfer learning consists of improving the learning of a given
target task through the knowledge acquired from a previously learned and related
source task. In the deep learning community, it has been heavily used as an strategy
to avoid over-fitting when training large models on relatively small datasets [Yosinski
et al., 2014]. For instance, the state-of-the-art models for object detection [Ren et al.,
2015], object segmentation [Zhao et al., 2018] and action recognition [Carreira and
Zisserman, 2017] are built from neural networks models pretrained on large human
annotated datasets for object classification and only fine-tuned in their respective
target task. However, such a strategy tends to become inefficient as the tasks differ
restricting its applicability in some applications. We also make use of this strategy
in the experiments of Chapter 4, where we first train deep learning models in the
proposed self-supervised task and then transfer the knowledge acquired to target
tasks using relatively small datasets.

2.2.5 Active Learning

In addition to costly, large human annotated datasets may contain redundancies or
uninformative samples which if removed would reduce significantly the amount of
data and time necessary to train visual recognition models. The active learning
framework [Settles, 2010] pursue this objective by enabling the learner to query the
user or an oracle for labels for the most important/informative samples. Standard se-
lection criteria include entropy [Joshi et al., 2009], boosting the margin for classifiers
[Collins et al., 2008] and expected informativeness [Houlsby et al., 2011]. Focusing
on a more realistic scenario, Vijayanarasimhan and Grauman [2011] present a live
learning approach that autonomously refines its object detection models by actively
requesting crowd-sourced annotations on images crawled from the Web. Recently,
language models have also been used to request more information, like answer for
specific questions about the content of the images, than a single image-level label
[Misra et al., 2018].

In a more exploratory scenario, reinforcement learning techniques have been ap-
plied to acquire supervision direct from the environment by simulating computer
games [Kulkarni et al., 2016], inverse kinematics [Baranes and Oudeyer, 2013], and
motion planning for humanoids [Frank et al., 2013]. In summary, these models at-
tempt to make fully supervised models more sample efficient when learning by la-
belling the most informative samples, extracting information from the images, or
generating relevant data through simulations.

2.3 Chapter Summary

In this chapter, we reviewed some important background material in visual recog-
nition. We started by discussing visual recognition problems, challenges, and appli-
cations. Next, we described a generic data-driven approach for visual recognition
that is followed by most of the state-of-the-art methods in different applications. In
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addition, we briefly presented the most important models for the visual recogni-
tion problems that are relevant for this thesis. Due to the limitations of the described
approach, we shifted our discussion to learning visual recognition models using min-
imal supervision by discussing different unsupervised learning paradigms, different
forms of weak supervision, and other ways to achieve such a goal.
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Chapter 3

Image Ranking by Predicting
Permutations

“The critical act in formulating computational
theories turns out to be the discovery of valid
constraints on the way the world is structured –
constraints that provide sufficient information to
allow the processing to succeed.”

David Marr and Herbert Nishihara, 1978

Machine learning algorithms often use the structure of data in order to provide
accurate and efficient solutions to difficult problems. For instance, in supervised
learning-to-rank, list-wise methods exploit structural information beyond pairs of
samples in order to learn better rankers [Cao et al., 2007]. Structured prediction
models such as CRFs [Lafferty et al., 2001] and Structured SVMs [Tsochantaridis
et al., 2004] explicitly model what structural information should be exploited by the
learning algorithm. Therefore, we can say that the structural information implicit in
data is crucial to machine learning applications.

Following these ideas, this chapter presents a learning framework that uses the
inherent structure in data and leverages the geometry of the output space to solve
image ranking tasks. As an example, consider the task of assigning a meaningful
order (with respect to some visually salient attribute) to the images shown in Fig-
ure 3.1. Indeed, it is difficult to solve this task by just processing a single image or
even a pair of images at a time where extracting visual cues related to the attributes
is limited. The task becomes feasible, however, if one exploits the structure and the
broader context by considering the entire set of images jointly. Only then do we start
to recognize shared patterns that could guide the algorithm towards a solution.

The aforementioned task essentially involve learning a function that can recover
the order, i.e., infer the shuffling permutation matrix (see Figure 3.1). However, such
a learning problem presents many challenges. First, enumerating every possible per-
mutation for a given set is usually infeasible since the number of permutations scales
factorially with the cardinality of the set. As such, naively learning discriminative
functions by enumerating all permutations is prohibitive. Second, a large amount of

37
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Subject: Smiling

Subject: Narrow Eyes

Permuted Image Original Image

Figure 3.1: Illustration of the proposed visual permutation learning task. The goal
of our method is to jointly learn visual features and the predictors to solve the vi-
sual permutation problem which consists of recovering the correct order of image

sequences.

data is required to effectively learn the variations of a permutation problem, which
requires more computational resources and efficient methods.

In this chapter, we address the problem of learning to predict visual permutations
by leveraging the geometry of permutation matrices. Towards this end, we propose
a novel permutation prediction formulation and a model based on convolutional
neural networks that can be trained end-to-end. This allows us to learn image repre-
sentations suitable for predicting permutations and to exploit the structure existent
in the data. Moreover, our formulation admits an efficient solution and allows our
method to be applied to a range of important computer vision problems. In sum-
mary, our method can be used in any problem that can be stated as a learning-to-rank
problem. For instance, the list-wise learning-to-rank problem [Xia et al., 2008] can
be seen as a scheme to predict the correct permutation of a random set of samples
given some criteria. Recommendation problems can be cast as selecting a subset of
items permuted according to the users’ profiles. In archeology, broken relics may be
re-assembled by permuting fragments [Brown et al., 2008]. Therefore, the proposed
learning framework for such a task would benefit different applications.

Our contributions are threefold. First, we propose the Visual Permutation Learning
problem as a generic task to learn structural concepts in ordered image sequences.
Second, we formulate such a problem as the prediction of the permutation matrix
that recovers the structure of the data from shuffled samples of it. Since permutation
matrices are discrete, we extend our formulation to their nearest convex surrogate,
doubly-stochastic matrices. From this proposed formulation, we develop an exact
solution by deriving and solving a bi-level optimization problem and an approximated
solution by using the iterative procedure Sinkhorn normalization. Last, we propose the
DeepPermNet model, a end-to-end learning framework to solve the visual permuta-
tion problem using convolutional neural networks. Since our approaches are defined
over continuous matrices and differentiable functions, the proposed model can be
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efficiently learned via backpropagation and stochastic gradient descent.
Initially, we evaluate how well our model can learn to predict permutation ma-

trices from shuffled image sequences. We observe that our model can leverage the
structure of large sequences and the geometry of permutations matrices to infer the
shuffling permutation, while naive approaches are only able to work with small
sequences. With our proposed approach validated, we apply our DeepPermNet
model to two different image ranking applications: relative attributes and supervised
learning-to-rank. We also extend the proposed model for learning self-supervised
image representations in Chapter 4.

In Section 3.4.2, we demonstrate that our proposed approach can be used to com-
pare images according to visual attributes by predicting permutations of unordered
sets of images. We evaluate this strategy on the relative attributes task where we out-
perform state-of-the-art methods on the Public Figures and OSR datasets [Parikh and
Grauman, 2011]. We also notice that our model is able to localize attributes without
any explicit supervision.

In Section 3.4.3, we extend our inference for image sequences of arbitrary length
by predicting permutations of fixed-length subsequences and aggregating the results
with a sorting algorithm. Using this approach, we evaluate our model on learning-
to-rank applications such as ranking scenes according to how interesting they look
[Gygli et al., 2013] and ranking cars according to their manufacturing date [Lee et al.,
2013]. In both applications, we outperform the state-of-the-art methods in all utilized
ranking metrics.

It is important to emphasize that other tasks in different scientific communities
can be cast as visual permutation learning. For instance, the jigsaw puzzle problem in
computer graphics [Cho et al., 2010; Sholomon et al., 2013], DNA or RNA modeling
in biology [Marande and Burger, 2007] and re-assembling relics in archeology [Brown
et al., 2008]. However, we limit our scope to computer vision. As we have just
described, we focus on image ranking applications in the current chapter, while we
tackle self-supervised representation learning in Chapter 4. More specifically, we
show that our visual permutation learning formulation can be used to learn features
in a self-supervised manner by exploring the structure of natural images. Using
our formulation as a self-supervised representation learning method, we achieve
performance similar to the state-of-the-art methods on object classification, detection
and segmentation on the Pascal VOC dataset [Everingham et al., 2007, 2012].

3.1 Visual Attributes and Their Applications

In this section, we review topics that are relevant to the applications considered in
this chapter. We start by describing visual attributes and different treatments given
by the computer vision community. We then describe their vast range of applications
and finish with a brief presentation of existing models for these applications.

Visual attributes are human understandable visual properties shared among im-
ages. They may range from simple visual features (such as “narrow eyes” and “bushy
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Eyes format

Smiling?Young?

Figure 3.2: Imagine you want to learn a ranking function. The pair of face images on
the top row may suggest that the criterion used to rank these faces is the age, the level
of “smiling” or the eyes format. On the other hand, the image sequence in the bottom
row makes clear that the format of the eyes is the most plausible ranking criterion
since the level of “smiling” and age would flip the order of the first two pictures,
according to the ground-truth information. Therefore, list-wise annotations are more

complete and less ambiguous which simplifies the learning of ranking functions.

eyebrows” in faces) to semantic concepts (like “natural” and “urban” scenes), or sub-
jective concepts (such as “memorability” and “interestingness” of images). Due to the
expressiveness of visual attributes, researchers have successfully used them for many
applications, including image search [Kovashka et al., 2012], fine-grained recognition
[Branson et al., 2013], and zero-shot learning [Parikh and Grauman, 2011; Lampert
et al., 2014].

Visual attributes are traditionally treated as binary predicates indicating the pres-
ence or absence of certain properties in an image. From this perspective, most of
the existing methods use supervised machine learning, whose goal is to provide
mid-level cues for object and scene recognition [Farhadi et al., 2010], or to perform
zero-shot transfer learning [Lampert et al., 2014].

However, there are also methods that can discover binary visual attributes in an
unsupervised way [Shankar et al., 2015; Huang et al., 2016]. Huang et al. [2016]
use unsupervised discriminative clustering and cluster membership as a soft form of
supervision to discover shared attributes. In contrast, our formulation directly learns
the properties of visual attributes in a data driven manner using a single end-to-end
trainable network able to explore the entire structure of the data.

A more natural view on visual attributes is to measure their strength in visual
entities. For instance, Parikh and Grauman [2011] introduced the problem of relative
attributes, in which pairs of visual entities are compared with respect to their relative
strength for any specific attribute. This problem is usually cast as a learning-to-rank
problem using pair-wise constraints. Following this idea, Parikh and Grauman [2011]
propose a linear relative comparison function based on the well-known Rank-SVM
[Joachims, 2006], while Yu and Grauman [2014] uses a local learning strategy.

With the recent success of deep learning methods in computer vision, CNN-
based methods to tackle the relative attributes problem have been developed. Souri
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et al. [2016] jointly learn image representation and ranking network to perform pair-
wise comparisons according to a certain attribute. Similarly, Singh and Lee [2016]
propose to combine spatial transformer networks [Jaderberg et al., 2015] and rank
networks to localize, in addition to compare visual attributes. Differently from our
proposed approach, the aforementioned methods use only pair-wise relationships.
As explained in Section 2.1.3, these pair-wise learning-to-rank approaches are often
less computationally expensive, but not very accurate when compared to list-wise
methods which can leverage structure within longer image sequences. For instance,
imagine you want to learn a ranking function from the pairs of face images in the
top row of Figure 3.2. The pair of face images on the top row may suggest that
the criterion used to rank these faces is the age, the level of “smiling” or the eyes
format. On the other hand, the image sequence in the bottom row makes clear
that the format of the eyes is the most plausible ranking criterion since the level
of “smiling” and age would flip the order of the first two pictures, according to
the ground-truth information. In summary, list-wise annotations are more complete
and less ambiguous which simplifies the learning of ranking functions. Therefore,
we propose a method that can leverage structure within longer image sequences to
learn accurate image rankers.

3.2 Preliminaries

In this section, we review the following background topics that we use in the subse-
quent sections for deriving our model for permutation learning: permutation matri-
ces, doubly stochastic matrices and bi-level optimization.

3.2.1 Permutation Matrices

In matrix theory, a permutation matrix is a binary square matrix that has exactly a
single unit value in every row and column, and zeros elsewhere. These matrices are
used to compactly represent permutations of elements in an ordered sequence. For
instance, given an ordered sequence S = 〈a1, . . . , an〉 of n elements any permutation
π : {1, . . . , n} → {1, . . . , n} can be uniquely represented by a permutation matrix Pπ.
Furthermore, if we describe the original ordered sequence as a column vector, then
any desired permutation π can be obtained by a simple matrix-vector multiplication,

Sπ = Pπ S (3.1)

where Pπ is formed by swapping the rows of the identity matrix according to the
desired permutation π.

The set of n× n permutation matrices is a subgroup in the group of nonsingular
matrices in Rn×n with cardinality n!. These matrices have very interesting and useful
properties. For instance, permutation matrices are closed under multiplication, that
is, the product of two permutation matrices is again a permutation matrix represent-
ing the combined permutation. Likewise, the inverse of a permutation matrix is the
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inverse permutation, i.e., the permutation that recovers the original sequence from
the permuted sequence, that can be efficiently computed by P−1 = PT (orthogonal-
ity).

3.2.2 Doubly Stochastic Matrices

A nonnegative matrix with the property that all its rows sum to one, is said to be
a row stochastic matrix. Likewise, its transpose is said to be column stochastic ma-
trix, since all its columns sum to one. A matrix that is simultaneously row and
column stochastic is said to be a doubly stochastic matrix (DSM). Mathematically,
the requirements for a matrix A ∈ Rn×n to be doubly stochastic are,

Aij ≥ 0, A 1 = 1, AT 1 = 1, (3.2)

where 1 is an n-dimensional column vector of ones.
Permutation matrices are doubly stochastic matrices. In fact, according to the

Birkhoff-von Neumann theorem [Birkhoff, 1946; Von Neumann, 1953], any doubly
stochastic matrix is a convex combination of finitely many permutation matrices.
Thus, the set of n × n DSMs forms a convex hull for the set of n × n permutation
matrices, known as the Birkhoff polytope Bn. Consequently, it is natural to think
of DSMs as convex relaxations of permutation matrices. Figure 3.3(a) illustrates the
geometry of the Birkhoff polytope.

Doubly stochastic matrices, as well as permutation matrices, have a prominent
history in engineering ranging from cryptography to topics in communication theory
[Brualdi, 1988]. And approximating doubly stochastic matrices is a key problem
in many applications. Here, we briefly demonstrate two efficient and principled
approaches to fulfill such tasks. In later sections, we explain how these approaches
can be applied in gradient based learners to solve our proposed permutation learning
problem.

3.2.2.1 The Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp [Sinkhorn and Knopp, 1967] theorem states that if A is a real
nonnegative squared matrix and has total support, then there exists a doubly stochas-
tic matrix Q of the form,

Q = Dl ADr (3.3)

where Dl and Dr are diagonal matrices with positive main diagonals. Furthermore,
there is a simple iterative procedure known as Sinkhorn Normalization, which can
find Dl and Dr by repeatedly rescaling the rows and columns of a given matrix.

Knight [2008] analyzes the convergence guarantees of Sinkhorn-Knopp algorithm.
The author states that for a matrix A with entries in [1, V], O(V |log ε|) iterations suf-
fice to reach ε-near double stochasticity. However, we noticed empirically that only a
few iterations are sufficient to reach acceptable approximations for most of the prob-
lems that we consider. Figure 3.3 shows empirical results for approximating DSMs
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Figure 3.3: Figure 3.3(a) Illustrates the Birkhoff polytope for n× n permutation ma-
trices. Figures 3.3(b), 3.3(c), and 3.3(d) shows boxplots of the approximation error for
the Sinkhron-Knopp algorithm applied on nonnegative random matrices of size 3x3,

6x6 and 9x9, respectively.

from nonnegative random matrices of sizes 3× 3, 6× 6 and 9× 9 using the Sinkhorn-
Knopp algorithm. We find it to converge to an acceptable accuracy in approximately
4–6 iterations in most cases.

3.2.2.2 Norm Approximation

Norm approximation is a well known problem in the field of convex optimization
[Boyd and Vandenberghe, 2004]. The goal of the norm approximation problem is to
approximate a vector, matrix, or space, as closely as possible, with deviation mea-
sured in the norm ‖·‖. We can cast the doubly stochastic approximation problem as
a norm approximation problem. Formally, given an arbitrary matrix A ∈ Rn×n, its
closest doubly stochastic matrix Q ∈ Bn can be obtained by solving the following
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problem,
minimize

Q ∈ Rn×n
+

‖Q− A‖

subject to Q 1 = 1

QT 1 = 1

(3.4)

which is a convex optimization problem. Thus, the solution is globally optimal.
Moreover, when the norm ‖·‖ is the frobenius norm, this problem can be stated as
a quadratic program (QP) which can be solved efficiently by most publicly available
solvers [Gurobi Optimization, 2016].

3.2.3 Bi-level Optimization

Given our interest in learning end-to-end models and solving DSMs approximation
problems optimally in the derivation of our visual permutation learning framework,
we need to deal with a bi-level optimization problem. We describe our specific prob-
lem in details in Section 3.3.3.1. Here we present a generic formulation for bi-level
optimization problems and discuss how to solve them.

A bi-level optimization problem consists of an upper problem and a lower prob-
lem, whose objectives (and constraints) share a set of variables. More specifically,
the former defines an objective over two sets of variables, say x and y, and the latter
binds y as an optimization problem parametrized by x. We can state the problem
mathematically as,

minimize
x

f (x, y)

subject to y ∈ argmin
y′

h
(
x, y′

) (3.5)

where f and h are the upper and lower level objectives, respectively. Recently, bi-level
optimization problems have found applications in machine learning and computer
vision where they have been applied to hyper-parameter learning [Wohlhart et al.,
2015], image denoising [Ochs et al., 2015], and video activity recognition [Fernando
and Gould, 2016].

We can solve such a problem by rewriting it as an equivalent single-level problem.
This can be done by replacing the lower problem with an analytical solution (e.g.,
normal equations for a least-square problem) or a set of sufficient conditions for
optimality (e.g., the KKT for convex problems). Then, the bi-level problem can be
solved using the resulting single-level problem. However, for many lower problems
either an analytical solution does not exist or the optimality conditions are hard to
express. Furthermore, the resulting problem may be hard to solve.

However, if the lower problem can be solved efficiently, and there exists a method
for finding the gradient at the current solution, we can solve the bi-level optimization
problem via gradient descent. The main idea is to compute the gradient of the
solution to the lower problem with respect to variables in the upper problem and
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perform updates of the form,

x ← x− α

(
∂ f
∂x

+
∂ f
∂y

∂y
∂x

)∣∣∣∣
(x,y?)

(3.6)

Note that the partial derivative ∂y
∂x may be difficult to compute, since it typically

involves a parametrized argmin or argmax optimization problem. For a detailed
explanation about procedures to differentiating such problems, we refer the readers
to Faugeras [1993] and Gould et al. [2016].

3.3 Visual Permutation Learning

In this section, we describe our method for learning visual permutations. We start by
formalizing the visual permutation learning task. Then, we describe our end-to-end
learning algorithm, deep learning model, and inference procedure. We finish this
section by discussing alternative approaches to our method.

3.3.1 Task Formulation

Let us start by considering the task illustrated in Figure 3.4. Given a sequence of
images ordered by a pre-decided visual criterion, for instance “smiling”, we gener-
ate shuffled sequences by applying randomly sampled permutation matrices to the
original sequences. Similarly, we can recover the original sequence from the shuffled
ones by “un-permuting" them using the inverse of the respective permutation matri-
ces. In this context, we define the visual permutation learning task as one that takes
as input a permuted sequence and produces as output the permutation matrix that
shuffled the original sequence.

Formally, let us define X to be an ordered sequence of l images in which the
order explicitly encodes the strength of some predetermined criterion c. For exam-
ple, c may be the degree of “smilingness” in each image. In addition, consider an
artificially permuted version X̃ where the images in the sequence X are permuted
by a randomly generated l × l permutation matrix P. Formally, the permutation
prediction task is to predict the permutation matrix P from a given shuffled image
sequence X̃ such that P−1 = PT recovers the original ordered sequence X.

We also hypothesize that deep models trained to solve this task are able to capture
high-level semantic concepts, structure, and shared patterns in visual data (In Chap-
ter 4 and Section 3.4, we provide empirical evidence supporting this hypothesis).
The ability to learn these concepts is important to perform well on the permutation
prediction task, as well as to solve many other computer vision problems. Therefore,
we posit that the features learned by our models are transferable to other related
computer vision tasks as well.

Note that we describe our problem using only ordered sequences. This may
seem a limitation, since structured information may be better represented by higher
dimensional data. However, most of the time these higher order representations
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Figure 3.4: Illustration of Permutation learning task as the prediction of the permuta-
tion matrix P from a given permuted image sequence X̃ such that P−1 = PT recovers

the original ordered image sequence X.

can be efficiently encoded as ordered sequences. For instance, the placement of 2-
D image regions can be represented as an ordered sequence, where every position
in the sequence is mapped to a distinct position in the 2D layout. Therefore, the
proposed task can be used to solve different problems encoded in terms of ordered
sequences.

3.3.2 Learning Objective

With the visual permutation learning task described, we now focus on how to solve
such a problem. We define a training set D = {(X, P) | X ∈ S c and ∀P ∈ P l}
composed by tuples of ordered image sequences X and permutation matrices P.
Here, S c represents a dataset of ordered image sequences, orderings implied by a
predetermined criterion c. Each X ∈ S c is composed of X = 〈I1, I2, . . . , Il〉, an ordered
sequence of images Ii. The notation P l represents the set of all l × l permutation
matrices. Accordingly, the training set D is composed of all shufflings of each X by
all P. Note that given an ordered X, such a dataset can be generated on-the-fly by
randomly permuting the order, and the size of such permuted sets scales factorially
on the sequence length l, providing a huge amount of data with low processing and
storage cost to train high capacity models.

Directly working with permutation matrices for deriving gradient-based opti-
mization solvers is difficult as such solvers often start with an initial point and it-
eratively refine it using small steps (stochastic updates along gradient directions)
towards an optimum. In this respect, working directly with discrete permutation
matrices is not feasible. Thus, in this work, we propose to approximate inference
over permutation matrices to inference over their nearest convex surrogate, the set
of doubly-stochastic matrices. As discussed in Section 3.2, it is natural to think of
DSMs as relaxations of permutation matrices.

Following these ideas, we propose to learn a parametrized function fθ : S c → Bl
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Figure 3.5: DeepPermNet Architecture. It receives a permuted sequence of images
as input. Each image in the sequence goes trough a different branch that follows the
AlexNet [Krizhevsky et al., 2012] architecture from conv1 up to fc6. Then, the outputs
of fc6 are concatenated and passed as input to fc7. Finally, the model predictions are

obtained by applying the Sinkhorn Layer on the outputs of fc8 layer.

that maps a fixed length image sequence (of length l) denoted by X̃ to an l× l doubly
stochastic matrix Q. In the ideal case, the matrix Q should be equal to P. Then, our
permutation learning problem can be described as,

minimize
θ

∑
(X,P)∈D

∆
(

P, fθ(X̃)
)
+ R (θ) , (3.7)

where X̃ is the image sequence X permuted by the permutation matrix P, ∆(·, ·) is
a loss function, θ captures the parameters of the permutation learning function, and
R(θ) regularizers these parameters to avoid overfitting. The exact implementation of
these components will be presented in the following sections.

3.3.3 Model Details

Having the task and learning objective defined, here we focus on the parametrization
of the function fθ (·). Note that we wish to learn the image representation that
captures the structure behind our sequences and also solves the permutation problem
jointly. As such, the function fθ(·) should learn intermediate feature representations
which encode semantic concepts about the input data. We propose to implement
the function fθ(·) as a convolutional neural network (CNN), which is able to exploit
large datasets and learn valuable visual features, that can be used as intermediate
representations, while jointly learning the required mapping.

More specifically, we use a Siamese type of convolutional neural network in
which each branch receives an image from a permuted sequence X̃ (see Figure 3.5).
Each branch up to the first fully connected layer fc6 uses the AlexNet architecture
[Krizhevsky et al., 2012]. The outputs of fc6 layers are concatenated and given as in-
put to fc7. All layers up to fc6 share the same set of weights. We refer to our proposed
model as DeepPermNet.

Note that, if we ignore the structure of permutation matrices, this problem can
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have many different naive and infective solutions which we discuss later in Sec-
tion 3.3.5. However, incorporating the inherent structure of permutation matrices
can avoid the optimizer from searching over impossible solutions, thereby leading to
faster convergence and better solutions. Thus, in the sequel, we discuss approaches
for the permutation learning problem that explore the geometry of permutation ma-
trices (using doubly-stochastic approximations).

3.3.3.1 Bi-level Optimization

Note that we wish to provide the closest doubly stochastic matrix Q̂ ∈ Bl from an
arbitrary matrix Q ∈ Rl×l

+ , e.g., CNN outputs. A principled way to achieve such a
objective is to define and solve a convex quadratic program (QP). In this way, we can
restate our learning problem in Equation 3.7 as,

minimize
θ

∑
(X,P)∈D

∆
(

P, Q̂
)
+ R (θ)

subject to Q̂ ∈ argmin
Q∈Bl

∥∥Q− fθ(X̃)
∥∥

F

(3.8)

where Bl is the Birkhoff polytope.
This formulation is an instance of a bi-level optimization problem discussed in

Section 3.2. Here, the loss minimization is the upper problem and the doubly stochas-
tic approximation is the lower problem. Furthermore, this formulation is well suited
for gradient-based optimization methods, provided that we can compute the gra-
dient of the argmin function in our lower level problem as other authors observed
[Domke, 2012; Ochs et al., 2015; Fernando and Gould, 2016].

In order to simplify the gradient computation, we can approximate the lower
level problem in Equation 3.8 by the following function h (·),

h (q) = argminq̂∈Rn
1
2 ‖q̂− q‖2

2 − µ ∑n
i=1 log (q̂i)

subject to Aq̂ = 1
(3.9)

where q, q̂ ∈ Rn are the vectorized versions of Q and Q̂ respectively
(
n = l2). The

equality constraints defined by A ∈ R(2l)×n and the log-barrier function approxi-
mates the Birkhoff polytope. The hyper-parameter µ ≥ 0 controls the quality of the
approximation. As µ → 0 the solution to the problem in Equation 3.9 converge to
the solution to the lower problem in Equation 3.8.

Recently, Gould et al. [2016] reviewed an earlier work of Faugeras [1993] and
collected some results on differentiating argmin and argmax optimization problems.
Here, we will make use of their Lemma 4.2 for linearly constrained argmin problems
that is restated in Lemma 3.3.1 below.

Lemma 3.3.1: Let f : R × Rn → R be a continuous function with first and sec-
ond derivatives. Let A ∈ Rm×n and b ∈ Rm with rank(A) = m. Let g(x) =
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argminy:Ay=b f (x, y). Let H = fYY(x, g(x)). Then,

g′(x) =
(

H−1AT
(

AH−1AT
)−1

AH−1 − H−1
)

fXY(x, g(x)) (3.10)

where fYY
.
= ∇2

yy f (x, y) ∈ Rn×n and fXY
.
= ∂

∂x∇y f (x, y) ∈ Rn.

However, note that h (·) is a vector-valued function on vector domain. As such,
we compute the derivative with respect to each input entry separately ∇qi h(q) ∈ Rn

and aggregate the results to compose the gradient ∇h(q) ∈ Rn×n. Finally, H =
∇2

q̂q̂ f (q, q̂) ∈ Rn×n and ∂
∂qk
∇q̂ f (q, q̂) ∈ Rn where f (q, q̂) ∈ R is the objective in

Equation 3.9, can be obtained using the following partial derivatives,

Hi,j =
∂ f 2(q, q̂)

∂q̂i∂q̂j
= [[i = j]]

(
1 + µq̂−2

i

)
(3.11)

∂

∂qk
∇q̂ f (q, q̂) = −[[i = k]], (3.12)

where [[ · ]] is the indicator function, evaluating to one if its argument is true and zero
otherwise. Note the gradient ∇qi h(q) can be efficiently computed because H is a
diagonal matrix and the derivative ∂

∂qk
∇q̂ f (q, q̂) does not depend on q. Finally, the

gradient of the loss with respect to the inputs can be easily obtained by applying the
chain rule.

3.3.3.2 Sinkhorn Normalization

Despite providing the optimal solution for the DSM approximation, the bi-level op-
timization approach may be computationally expensive, since we need to solve an
optimization problem for every sample in the training batches. Alternatively, we can
resort to an approximate solution based on the Sinkhorn-Knopp algorithm discussed
in Section 3.2.

Inspired by Adams and Zemel [2011], here we propose a CNN layer that performs
Sinkhorn normalization. Consider a matrix Q ∈ Rl×l

+ , which can be converted to a
doubly stochastic matrix by repeatedly performing row and column normalizations.
Define row R (·) and column C (·) normalizations as follows,

Ri,j (Q) =
Qi,j

∑l
k=1 Qi,k

; Ci,j (Q) =
Qi,j

∑l
k=1 Qk,j

(3.13)

Then, the Sinkhorn normalization for the n-th iteration can be defined recursively as:

Sn(Q) =

{
Q, if n = 0

C
(

R
(
Sn−1 (Q)

))
, otherwise.

(3.14)

The Sinkhorn normalization function Sn (·) is differentiable and we can compute
its gradient w.r.t. the inputs by unrolling the normalization operations and propa-
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gating the gradient through the sequence of row and column normalizations. For
instance, the partial derivatives of the row normalizations can be defined as,

∂∆
∂Qp,q

=
l

∑
j=1

∂∆
∂Rp,j

[
[[j = q]]

∑l
k=1 Qp,k

−
Qp,j(

∑l
k=1 Qp,k

)2

]
(3.15)

where Q and R are the inputs and outputs of the row normalization function. The
derivative of the column normalization can be obtained by transposing indexes ap-
propriately. In practice, before applying the Sinkhorn normalization, we add a small
value (≈ 10−3) to each entry of Q as a regularization term to avoid numerical insta-
bility.

Despite being a principled and efficient approach, the Sinkhorn normalization
layer may have a notorious drawback from the CNN optimization point of view –
the problem of vanishing gradients in deep networks [Glorot and Bengio, 2010]. This
may happen because each normalization can be seen as an extra layer to the network
which makes the network deeper. However, as observed for random matrices in
Figure 3.3, a small number of normalizations are sufficient to approximate the doubly
stochastic matrix from CNN‘s raw outputs, and consequently the vanishing gradients
problem is avoided.

3.3.4 Inference Algorithm

Finally, we describe the last component of our approach, the inference procedure.
Our main goal is to recover the original image sequence from a permuted sequence.
Thus, our inference consists of approximating the closest permutation matrix P̂ from
the predicted doubly stochastic matrix Q. This problem can be described as,

P̂ ∈ argmin
P

‖P−Q‖F

subject to P · 1 = 1

1T · P = 1

P ∈ {0, 1}l×l

(3.16)

where P̂ is our approximated permutation matrix from Q.
This problem is an instance of a mixed-boolean program and can be efficiently

solved by branch-and-bound methods available in public solvers [Diamond and
Boyd, 2016]. These methods begin by finding the optimal solution to the convex
“relaxation” of the problem without the boolean constraints. If the optimal solution
has any non-boolean variables, it creates new subproblems where the variables are
more tightly constrained and this process is repeated until a solution that satisfies all
boolean constraints is found.

After solving this problem to obtain P̂, we transpose it to compute the inverse
permutation matrix since P̂T = P̂−1. Then we can recover the original sequence X
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Algorithm 3.1 Simple bubble sort style algorithm for ordering longer sequence.

Input: Shuffled image sequence X̃.
1: Let L and l be the length of X̃ and the input size of model fθ (·), respectively.
2: while L ≥ 1 do
3: for i = 0, . . . , max(0, L− l) do
4: Q̂← fθ

(
X̃ [i : i + l − 1]

)
. . Predicting the DSM for a subsequence

5: Approximate P̂ from Q̂ by solving the opt. problem in Equation 3.16.
6: X̃ [i : i + l − 1]← P̂TX̃ [i : i + l − 1]. . ordering a subsequence
7: end for
8: L← L− l + 1
9: end while

from the permuted sequence X̃ as,

X = P̂TX̃. (3.17)

3.3.4.1 Ranking Long Sequences

In some applications like multimedia retrieval, the sequence of images to be ordered
according to a given criterion may be very long. Therefore, we also want to be
able to recover the original image sequence from a permuted sequence of arbitrary
length. Since a sequence of length L is correctly ordered if and only if all of its
subsequences of length l are correctly ordered, we extend our inference for image se-
quences of arbitrary length by predicting permutations of fixed-length subsequences
and aggregating the results with a sorting algorithm. For simplicity, we describe
in Algorithm 3.1 a bubble sort style algorithm for ordering long sequences using
the visual permutation learning framework. Figure 3.6 illustrates an example of the
execution of such an algorithm and Section 3.4.3 evaluates this approach on image
ranking applications.

3.3.5 Alternative Approaches

In this section, we describe alternative approaches to solve the visual permutation
learning problem. Overlooking all nice properties of permutation matrices, we can
reformulate the permutation learning problem as a regression on the correct ordered
sequence. More specifically, we can explicitly lean to predict the correct position
of each item in a given shuffled input sequence by minimizing the euclidean loss
between the correct sequence and the predictions. However, this solution may focus
on correcting outliers, like swapping the first element by the last, which generates
most part of the overall loss leading to a suboptimal solution.

Likewise, we can follow a discriminative setup (as done in [Noroozi and Favaro,
2016; Lee et al., 2017]) and cast our problem as a multi-class classification problem
which we enumerate every possible permutation as a independent class. However,
this solution is not feasible in practice since the number of parameter and predictors
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Criterion: Smiling

Figure 3.6: Example of the execution of the proposed algorithm to sort long se-
quences. We use the proposed DeepPermNet model trained on fixed-size sequences
of length l and the sorting algorithm shown in Algorithm 3.1 to order long sequences

of length L where L ≥ l.

in the model scales factorial with the the input length. For instance, for a sequence
of length 8 we need 40320 classes, which is intractable even for deep models.

On the other hand, we can use the permutation matrices formulation only to
avoid the aforementioned enumeration problem and cast our problem as an l2 binary
classification problem by optimizing the combination of sigmoid outputs and cross-
entropy loss,

∆(P, Q) =− 1
l2

l×l

∑
ij

[
Pi,j log

(
Qi,j
)
+
(
1− Pi,j

)
log
(
1−Qi,j

) ]
, (3.18)

where each entry Pi,j is a binary entry in the target permutation matrix P and Qi,j
is an arbitrary prediction outputted by the function fθ(X̃). We refer to this solu-
tion as naive approach since it is more related to our proposed model. Note this
solution does not explore the geometry of permutation matrices and has a series of
inefficiencies which will be demonstrated in our experiments.

3.4 Experiments

We now describe how our model can tackle different computer vision problems and
measure our models performance on well established benchmarks. First, we give
some details of the datasets used in our experiments. Second, in Section 3.4.1, we an-
alyze how effectively our proposed model solves the permutation prediction problem
under different settings. Third, in Section 3.4.2, we evaluate our model on the rela-
tive attributes task. Last, in Section 3.4.3, we evaluate our model for long sequences
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using image ranking applications.
We evaluate our proposed model using the following datasets (see Figure 3.7):

Public Figures (PubFig) [Parikh and Grauman, 2011]. This dataset consists of 800
facial images of eight public celebrities annotated with eleven physical attributes,
such as big lips, white, and young. This is a relative attribute dataset with category
level annotation, i.e., all images in a specific category may be ranked higher, equal,
or lower than all images in another category, with respect to an attribute. Our goal
is to rank subsets of images according to these visual attributes.
Outdoor Scene Recognition (OSR) [Parikh and Grauman, 2011]. This is another
relative attribute dataset with category level annotation. It consists of 2688 images of
eight different types of outdoor scenes such as Mountain, Forest, and Coast, anno-
tated with six different visual attributes such as natural and open. This dataset has
more ties between pair of images than PubFig, which may impose some difficulties
to our model as discussed in later sections.
Historical Car (CarDb) [Lee et al., 2013]. This dataset consists of 12k images of cars
annotated with manufacturing information such as model and manufacturing year.
In this work, we are interested in ranking the cars according to their manufacturing
date. Different from the PubFig and OSR datasets, CarDb has instance-level annota-
tions, i.e., each image may be ranked higher, equal or lower than other image. This
is a harder problem, since fine-grained comparisons have to be made in order to
correctly rank the images.
Interestingness Annotations. This dataset comes from an investigation of human
interest in photos by Gygli et al. [2013]. Using psychophysical experiments on Me-
chanical Turk, they annotate the images from OSR dataset with an interestingness
score which measures the degree of interestingness of an image. Our goal is to
rank images according to how interesting they are. Similar to CarDb, this dataset is
instance-level annotated and we use the OSR train/test splits in our experiments.
ImageNet [Krizhevsky et al., 2012]. This is a large scale dataset for object recogni-
tion. It consists of approximately 1.3M images of 1k different object categories. In
our experiments, we use the training set images of this dataset discarding the labels
to learn image representations in a self-supervised fashion (See Chapter 4).
Pascal VOC [Everingham et al., 2007, 2012]. This is a fine-grained object recognition
dataset. It has 9,963 images containing 24,640 annotated objects of 20 different classes.
This dataset provides image, bounding boxes and pixel level annotations and it is
widely used in the literature. In this work, we evaluate our self-supervised image
representations in this dataset for object classification, detection and segmentation.

3.4.1 Permutation Prediction

In this experiment, we evaluate our proposed method on the permutation predic-
tion task and compare with a naïve approach which combines sigmoid outputs and
cross-entropy loss by casting the permutation prediction problem as a multi-label
classification problem. In this experiment, we use the Public Figures dataset [Parikh
and Grauman, 2011] and its default train and test splits.
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Figure 3.7: Datasets used in our experiments: PubFig and OSR [Parikh and Grau-
man, 2011], CarDb [Lee et al., 2013], Interestingness [Lee et al., 2013], Pacal VOC

[Everingham et al., 2007, 2012] and ImageNet [Krizhevsky et al., 2012].

In our implementation, we use stochastic gradient descent with mini-batches of 32
image sequences, images of 256× 256 pixels and different sequence lengths. During
preprocessing, we subtract the mean and randomly crop each image to size 227× 227.
We initialize our network from conv1 to fc6 layers using an AlexNet model pre-trained
on the ILSVRC 2012 [Krizhevsky et al., 2012] dataset for the task of image classifi-
cation, while other layers are randomly initialized from a Gaussian distribution. We
set the learning rate to 10−5 and fine-tune our model for permutation prediction over
25k iterations using the multi-class cross entropy loss. These hyper-parameters and
implementation details are used throughout the experiments in this chapter.

As performance metrics for the permutation prediction task, we use Kendall-tau
and Hamming similarity. Kendall tau is defined as KT = c+−c−

0.5l(l−1) , where c+ and
c− denote the number of all pairs in the sequence that are correctly and incorrectly
ordered, respectively. It captures how close we are to the perfect rank. The Ham-
ming similarity measures the number of equal entries in two vectors or matrices
normalized by the total number of elements. It indicates how similar our prediction
is to the ground truth permutation matrix. In addition, we measure the averaged `1

normalization error of rows and columns of the predicted doubly stochastic matrices.
We train a CNN model for each attribute in the Public Figures dataset by sam-

pling 30K ordered image sequences from the training images. We then evaluate the
trained models on 20K image sequences generated from the test set by sampling cor-
rectly ordered sequences and randomly permuting them. We averaged the results
over the 11 attributes and repeat the experiment for image sequences of length 4 ,
6 and 8. Figure 3.8 presents the results for our proposed methods and the naïve
approach.

We observe the naïve approach works well for small sequences and is able to
learn the normalization by itself. As the sequence length increases, however, the
performance of the naïve approach degenerates and the `1 normalization error in-
creases. On the other hand, the Sinkhorn Normalization and Bi-level optimization
approaches reach better results in both Kendall-Tau and Hamming similarity while
keeping the normalization error almost unchangeable even for longer sequences.
This fact suggests that exploring the geometrical structure of the space of doubly-
stochastic matrices (and thereby the permutation matrices) is useful.
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Figure 3.8: Evaluating and comparing naive approach, Sinkhorn normalization and
bi-level optimization variants of the proposed model on the permutation prediction
task using the Public Figures Dataset [Parikh and Grauman, 2011]. The models are
trained and tested for each attribute separately. We report the mean and standard
deviation of the the performance metrics (Kendall Tau, Hamming similarity, and

normalization error) across the attributes.

It is worth noting that we could train our model for all attributes jointly by shar-
ing the convolution layers and adding as many fully connected layers as the number
of attributes. Such an approach is well known in multi-task CNNs [Abdulnabi et al.,
2015] and usually provides more generalizable models. However, this approach re-
quires more memory resources which would slow down our experiments.

3.4.2 Relative Attributes

In this experiment, we use DeepPermNet to compare images in a given sequence ac-
cording to a certain attribute by predicting permutations and applying their inverse.
This procedure can be used to solve the relative attributes task, the goal of which is
to compare pairs or sets of images according to the “strength” of a given attribute.
In this context, we compare our proposed approach to state-of-the-art methods for
relative attributes.

For this application, we use the OSR scene dataset [Parikh and Grauman, 2011],
the Public Figures Dataset [Parikh and Grauman, 2011], and the implementation
details and hyper-parameters described in the previous section. We train our model
for each attribute with 30k ordered image sequences of length 8 generated from the
training set. Then, we report our models performance in terms of pairwise accuracy
measured on the predicted ordering for 20k image sequences of length 8 generated
from the test set using stratified sampling.

Different from the existing methods [Souri et al., 2016; Singh and Lee, 2016] which
also use deep features and pre-trained models, we directly predict the order of se-
quences of images instead of pairs. Our scheme allows us to make use of the struc-
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Table 3.1: Evaluating the proposed model on the Public Figures Dataset. We report
the pairwise accuracy as well as its mean across the attributes.

Method Lips Eyebrows Chubby Male Eyes Nose Face Smiling Forehead White Young Mean
Parikh and Grauman [2011] 79.17 79.87 76.27 81.80 81.67 77.40 82.33 79.90 87.60 76.97 83.20 80.56
Li et al. [2012] 81.87 81.84 79.97 85.33 83.15 80.43 86.31 83.36 88.83 82.59 84.41 83.37
Yu and Grauman [2014] 90.43 89.83 87.37 91.77 91.40 89.07 86.70 87.00 94.00 87.43 91.87 89.72
Souri et al. [2016] 93.62 94.53 92.32 95.50 93.19 94.24 94.76 95.36 97.28 94.60 94.33 94.52
DeepPermNet (Sinkhorn Norm.) 99.55 97.21 97.66 99.44 96.54 96.21 99.11 97.88 99.00 97.99 99.00 98.14
DeepPermNet (Bi-level Opt.) 99.53 96.65 98.54 98.99 97.21 94.72 99.44 98.55 98.77 95.66 98.77 97.89

Table 3.2: Evaluating the proposed model on the OSR dataset. We report the pairwise
accuracy as well as its mean across the attributes.

Method Depth-Close Diagonal-Plane Natural Open Perspective Size-Large Mean
Parikh and Grauman [2011] 87.53 86.5 95.03 90.77 86.73 86.23 88.80
Li et al. [2012] 89.54 89.34 95.24 92.39 87.58 88.34 90.41
Yu and Grauman [2014] 90.47 92.43 95.7 94.1 90.43 91.1 92.37
Singh and Lee [2016] 96.1 97.64 98.89 97.2 96.31 95.98 97.02
Souri et al. [2016] 97.65 98.43 99.4 97.44 96.88 96.79 97.77
DeepPermNet (Sinkhorn Norm.) 96.09 94.53 97.21 96.65 96.46 98.77 96.62
DeepPermNet (Bi-level Opt.) 97.99 98.21 97.76 97.10 97.21 96.65 97.49
DeepPermNet (Sinkhorn Norm. + VGG16) 96.87 97.99 96.87 99.79 99.82 99.55 98.48
DeepPermNet (Bi-level Opt. + VGG16) 98.12 99.92 98.13 97.78 98.72 97.87 98.42

ture in the sequences as a whole, which is more informative than pairs providing
better performance. For a fair comparison to prior methods, we measure our perfor-
mance by computing the pairwise accuracy for all pairs in each sequence. Tables 3.1
and 3.2 present our results.

On the Public Figures dataset, DeepPermNet outperforms the state-of-the-art
models by a margin of 3% in pairwise accuracy. It is a substantial margin, con-
sistently observed across all attributes. Note that, we outperform the recent method
Souri et al. [2016], which uses a pre-trained VGG16 model that has significantly
more modeling capacity than the AlexNet [Krizhevsky et al., 2012] architecture that
we use. On the other hand, our method works slightly worse than [Souri et al., 2016]
on the OSR dataset. We also provide results by building our scheme on a VGG16
model. As is clear, using this variant, we demonstrate even better results outper-
forming the state-of-the-art methods. In addition, the bi-level variant of our model,
despite providing optimal solution to the doubly stochastic approximation, works on
par with the Sinkhorn layer, which shows that the Sinkhorn operator is a sufficient
approximation for our problem.

It is worth noting that DeepPermNet works better when we use longer sequences
for training, because they provide rich information that can be directly used in our
method. For instance, the performance of DeepPermNet drops 7% in terms of aver-
age pairwise accuracy on the Public Figures dataset when we train our model using
just pairs. In addition, the proposed model is not able to explicitly handle equal-
ity cases, since the permutation learning formulation assumes each permutation is
unique, which is not true in the relative attributes task. Perhaps, this is the rea-
son for the difference in performance between the Public Figures and OSR datasets.
Nonetheless, DeepPermNet is able to learn very good attribute rankers from data as
shown in our experiments.

We also compute the saliency maps of different attributes using the method pro-
posed by Simonyan et al. [2014]. More specifically, we take the derivative of the esti-
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mated permutation matrix with respect to the input, given a set of images. We per-
form max pooling across channels to generate the saliency maps. Figure 3.9 presents
qualitative results and saliency maps generated by DeepPermNet for different at-
tributes.

Bushy-Eyebrows 
(Public Figures)

Smiling 
(Public Figures)

Natural (OSR)

Open (OSR)

Weak Strong

Figure 3.9: Qualitative results: Samples from the Public Figures and OSR test images
are ordered according to different attributes. Saliency maps: Smoothed visualization
of the derivative of the estimated permutation matrix w.r.t the input images. Regions
with warmer color are more relevant to the predicted permutation for the specified

attribute. Better viewed in color.

This map is a simplified way to visualize which pixels, regions, and features
of a given image are more relevant to the respective permutation predicted by our
method. For instance, the attribute “bushy eyebrows" is sensitive to the region of
eyes, while the attribute “smiling” is more sensitive to the mouth region. An inter-
esting observation is the possibility of localizing such features without any explicit
supervision (e.g., bounding boxes), which could be used for unsupervised attribute
localization.

Draft Copy – 13 December 2019



58 Image Ranking by Predicting Permutations

Table 3.3: Evaluating the proposed model on ranking scenes according how inter-
esting they look and ranking cars according to their manufacturing date. We report
normalized discounted cumulative gain (NDCG), Kendall Tau (KT), and pairwise

accuracy.
Scene Interestigness Car Chronology

Method NDCG KT Pair. Acc. NDCG KT Pair. Acc.
Joachims [2006] 0.870 0.317 65.8 0.928 0.482 74.1
Xu and Li [2007] 0.745 -0.077 46.1 0.827 0.118 55.9
Wu et al. [2010] 0.860 0.315 64.3 0.935 0.409 70.6
Cao et al. [2007] 0.821 0.118 55.9 0.872 0.291 64.5
Xia et al. [2008] 0.862 0.282 64.1 0.854 0.278 63.9
Fernando et al. [2015a] 0.887 0.347 67.4 0.949 0.553 76.9
Ours (Sinkhorn Norm.) 0.922 0.360 68.0 0.968 0.724 86.2
Ours (Bi-level Opt.) 0.923 0.363 68.2 0.964 0.700 84.9

3.4.3 Supervised Learning to Rank

We select two supervised image ranking applications to compare our method with
other supervised learning-to-rank algorithms, namely, ranking images based on in-
terestingness and ordering car images by manufacturing date. For the former, we
use the annotations provided by [Gygli et al., 2013] which assign an interestingness
score for images of the OSR dataset. For the latter, we use the car dataset [Lee
et al., 2013] which is composed by images of cars manufactured from 1920 to 1999.
As implementation details, we use the same model hyper-parameters described in
Section 3.4.1.

In this experiment, we train our model by sampling 30k sequences of length four
from the training images, and use our learned model and the procedure described
in Algorithm 3.1 to rank 20k sequences of length 20 sampled from the test images.
Note that the test sequences are longer than the training sequence in this experiment.
The final rank obtained is evaluated with rank metrics like NDCG (Normalized Dis-
counted Cumulative Gain), Kendall-tau and Pairwise accuracy. Table 3.3 presents the
results.

We observe that our method improves the accuracy of the ranking consistently
for all evaluation criteria. It is worth pointing out that the proposed model work
drastically better than other neural network models such as ListNet [Cao et al., 2007].
We argue that this improvement is caused by the image representation implicitly
learned in a end-to-end fashion by our method. We again observe that the Sinkhorn
normalization presents results as good as the exact solution provided by the bi-level
optimization variant.

3.5 Chapter Summary

In this chapter, we tackled the problem of learning the structure of visual data by
introducing the task of visual permutation learning. We formulated an optimization
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problem for this task with the goal of recovering the permutation matrix responsible
for generating a given randomly shuffled image sequence based on a pre-defined vi-
sual criteria. We proposed novel CNN layers that can convert standard CNN predic-
tions to doubly-stochastic approximations of permutation matrices using Sinkhorn
normalizations and bi-level optimization. Thus, the proposed CNN model can be
trained in an end-to-end manner.

Through a variety of experiments, we assess the proposed method and demon-
strate that permutation learning can be applied to different tasks. More specifically,
we first validate the hypothesis of exploring the geometrical structure of doubly-
stochastic matrices helps to learn visual permutations. As shown in Figure 3.8, both
variants of the proposed DeepPermNet outperform the naïve approach. We then con-
tinued our evaluation for real-world applications and state-of-the-art methods such
as relative attributes (Section 3.4.2) and supervised learning to rank (Section 3.4.3).
In Chapter 4, we extend the pool of applications by testing the proposed approach
on self-supervised representation learning. In all experiments, we present state-of-
the-art results demonstrating the usefulness of the proposed permutation learning
schema.

It is important to highlight the advantages and disadvantages of our two variants
of the proposed approach. The bi-level optimization variant optimally solves the
doubly-stochastic approximation problem, while the Sinkhorn normalization variant
is an efficient and approximate solution for such a problem. However, in practice the
Sinkhorn variant works slightly better than the bi-level variant in most of the cases
which, perhaps, is a consequence of the quality of image representations learned as
evidenced in Chapter 4. Even so, the bi-level variant is able to provide improve-
ments in some cases, e.g, four attributes in Pubfig (Table 3.1), two attributes in OSR
(Table 3.2), and Scene Interestingness (Table 3.3). Moreover, the bi-level variant can
explore different norms which may further improve the results. However, it comes
at the cost of solving an optimization problem for every input during training and
inference.
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Chapter 4

Learning Image Representations by
Permuting Image Regions

“Computer science is an empirical discipline. [...]
Each new machine that is built is an experiment.
Actually constructing the machine poses a
question to nature; and we listen for the answer by
observing the machine in operation and analyzing
it by all analytical and measurement means
available.”

Allen Newell and Herbert Simon, 1975

In the previous chapter, we leveraged the geometry on the output space to learn
very accurate image rankers with the proposed visual permutation learning frame-
work. Motivated by the generality of the proposed framework, the current chapter
shows how to use the spatial structure and other visual priors existent in image data
as self-supervision to train such a framework. We demonstrate that this form of
supervision, which does not require a single human annotator, encourages the learn-
ing of transferable features for object recognition tasks such as object classification,
detection and segmentation.

Visual data encompasses rich spatial (and temporal) structure, which is often
useful for solving a variety of problems. For instance, surrounding background usu-
ally offers strong cues for object recognition, sky and ground usually appear at pre-
dictable locations in an image, and objects are made up of known parts at familiar
relative locations. Such structural information within visual data has been used to
solve several problems, such as object detection and semantic segmentation [Mot-
taghi et al., 2014; Saxena et al., 2009; Marszalek et al., 2009].

Following these ideas, consider the task shown in Figure 4.1. Here we ask the
question “given shuffled image patches like a jigsaw puzzle, can we recover the original im-
age?". Although this is a difficult task (even for a human), it becomes straightforward
once we identify the object in the patches (e.g., a cat), and arrange the patches for
the recognized object, thereby recovering the original image and solving the jigsaw.
Therefore, we hypothesize that a machine learning model in order to do well on this

61
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Subject: Smiling

Subject: Narrow Eyes

Permuted Image Original Image

Figure 4.1: Illustration of the self-supervised pretext task. The goal is to learn visual
features and solve image jigsaws jointly.

task also needs to understand scenes and objects, i.e., they need to implicitly build
a good visual representation that extract objects and their parts in order to reason
about their spatial location. As discussed before, this knowledge is also very useful
for other object recognition tasks.

Furthermore, these jigsaws can be generated cheaply and in abundance from
natural images. The problem of recovering the original image from shuffled ones
can be cast in an unsupervised learning setting. Here the recovery task does not
require any human annotations (and is thus unbiased given sufficient data [Torralba
and Efros, 2011]). Instead it uses the spatial structure as a supervisory signal. Such
a learning task is commonly known as self-supervised learning [Doersch et al., 2015;
Fernando et al., 2017; Misra et al., 2016; Noroozi and Favaro, 2016; Noroozi et al.,
2017; Gidaris et al., 2018], and is very useful to learn rich features, especially in
the context of training deep learning models, which often require large amounts of
annotated datasets.

In this self-supervised context, Doersch et al. [2015] show that the spatial layout
of objects is a strong supervisory signal to learn transferable image representations,
while others [Noroozi and Favaro, 2016; Misra et al., 2016; Lee et al., 2017] cast the
problem of recovering the original image from shuffled ones as the prediction of a
subset of permutations of image regions. More specifically, Misra et al. [2016] model
the problem via binary classification and learn to discriminate between correct and
incorrect permutations of a sequence. Noroozi and Favaro [2016] learn a multi-
class classifier to distinguish between a few prototype permutations selected by a
clustering procedure. Similarly, Lee et al. [2017] formulate a multi-class problem on
pairwise features. However, these approaches fail to consider structural information
beyond a small subset of jigsaws, since enumerating all possible permutations of
image regions for a big collection of images is prohibitive.

In the same fashion as image ranking problems in the previous chapter, this task
essentially involve learning a function that can recover the order. Therefore, in this
chapter, we reformulate the “unshuffling” problem by encoding these jigsaws as se-
quences of image patches and solve them by predicting the permutation that recov-
ers the original sequence using the proposed visual permutation learning framework.
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Different from previous works, this approach allows us to explore the entire structure
of natural image, all possible permutations of the image regions, and more compli-
cated jigsaws using finer shuffling grids (e.g., 4× 4, 5× 5, and so on). In summary,
this chapter contributes to our thesis by extending the proposed visual permutation
learning framework to leverage the structure and visual priors of natural images
in order to learn self-supervised image representations. We test the learned rep-
resentations on object recognition tasks such as object classification, detection and
segmentation on the Pascal VOC dataset [Everingham et al., 2007, 2012].

4.1 Self-Supervised Image Representation Learning

Due to the emergence and success of data hungry machine learning models like deep
neural networks, the self-supervised learning paradigm has attracted a lot of atten-
tion from the computer vision community recently. The main idea of self-supervision
is to exploit supervisory signals, intrinsically in the data, to guide the learning pro-
cess. In this learning paradigm, a model is trained on an auxiliary task that provides
an intermediate representation that can be used as generic features in other tasks.
In deep learning, these approaches are well-suited as a pre-training procedure in
situations when there is not sufficient data to support fully supervised learning [Gir-
shick et al., 2014; Long et al., 2015]. In this section, we review image representation
learning techniques focusing on the methods that follows such a learning paradigm.

The main objective of self-supervised representation learning methods is to learn
visual representations without human supervision, and they differ greatly in the
proposed pretext task and supervisory signal. For example, Doersch et al. [2015] use
spatial co-location of patches in images, Wang and Gupta [2015] use object track-
ing in videos to provide similar representations for corresponding objects, Fernando
et al. [2017] use odd-one-out question answering, Pathak et al. [2016] explore image
context to recover missing parts in an image, Pathak et al. [2017] exploit low-level
motion-based grouping cues, Noroozi et al. [2017] propose to count visual primitives
in images, and Gidaris et al. [2018] explore geometric transformations of images like
2d rotations. In contrast, our proposed method is generic and can be used to solve a
broader set of problems.

On the other hand, there are pretext tasks that can be useful themselves. Isola
et al. [2016] learn to group visual entities based on their frequency of co-occurrence
in space and time. Zhang et al. [2016] propose a model to provide plausible color
versions for grayscale images. Donahue et al. [2017] build a generative model for
natural images. Note, however, that these methods are highly engineered for their
training task and they can not be easily extended to deal with other applications. On
the other hand, our method is a general framework able to solve different problems.

A recent work closely related to ours is Noroozi and Favaro [2016] that also pro-
poses to train CNNs for solving image-based jigsaw puzzles. However, different
from us, they train a CNN to predict only a tiny subset of possible permutations
generated from an image shuffling grid of size 3× 3 (specifically, they use only 100
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Auxiliary/Pretext Task - Image Jigsaw Target Tasks - Object Recognition
Classification Detection Segmentation

Transfer Learning  𝜃

Figure 4.2: The proposed self-supervised representation learning approach. We first
train a given deep learning model to solve image jigsaws and then we transfer the

knowledge acquired for deep learning based object recognition models.

permutations from the set of 362k possible permutations). Lee et al. [2017] propose
similar schema to order sequences of frames in videos. Our method, instead, can
handle the full set of permutations and is scalable to finer shuffling grids (e.g., 4× 4,
5× 5, and so on). In addition, our scheme is generic and can also be used to solve
different kinds of learning-to-rank problems.

4.2 Approach

In this section, we describe our method for learning visual representations without
human supervision. We start by describing in detail the self-supervised image rep-
resentation learning pipeline. Then, we describe the proposed pretext task and our
solution based on the visual permutation learning framework described in Chap-
ter 3. We finish this section by discussing implementation details important to learn
meaningful visual features.

4.2.1 The Self-Supervised Paradigm

As discussed above, the self-supervised learning paradigm aims to learn machine
learning models and visual representations without human supervision. In contrast
to other unsupervised paradigms, these methods first train machine learning models
in auxiliary tasks whose the labels can be easily obtained without human supervision
and then transfer the knowledge acquired to a fully supervised target task which is
the final goal of the system. These auxiliary tasks are usually motivated by prior
knowledge and regularities intrinsically existent in the visual world that provides
important clues to solve the target task. For instance, the colorization of objects in a
collection of images requires to understanding geometric transformations and object
deformation patterns which is also essential to build accurate object tracking systems
[Vondrick et al., 2018], the prediction of the relative position of object parts also re-
quires to recognize the object identity which is a common goal with object recognition
systems [Doersch et al., 2015], and recognizing temporal coherent videos demands to
learn motion dynamics which is also an important clue for action recognition [Misra
et al., 2016].

In order to formalize these ideas, let us consider the auxiliary task S and the
final task T whose ideal solutions explores similar clues and knowledge. Following

Draft Copy – 13 December 2019



§4.2 Approach 65

a machine learning approach for these tasks, let us also define two data sets DS and
DT and two models f and h for the tasks S and T, respectively. The self-supervised
learning approach can be summarized as first learning the model f for the auxiliary
task S using the dataset DS and then transfer this knowledge to the model h which
is adapted for the task T using the dataset DT. Another essential requirement is that
the data DS is composed of a collection of visual inputs X (e.g., , videos and images)
and their artificial labels Y which are generated from X itself using some hand-
crafted procedure. In order for this approach be useful for real world applications,
such a procedure has to be computationally cheap and generate artificial labels in
abundance. In other words, it should provide a large dataset DS allowing the dataset
DT for the target task T, which is usually human annotated, to be much smaller
than the nowadays large scale datasets like ImageNet [Russakovsky et al., 2015] and
MS-COCO [Lin et al., 2014].

In the context of deep learning models, self-supervised learning is a very use-
ful approach to alleviate the needs for large scale human annotated dataset that has
hampered the application of these models in the real world. Furthermore, deep
models like neural networks and other parametrized approaches are well-suited for
this learning paradigm since the knowledge acquired by these models can be easily
transferred across models and tasks without complicated procedures [Yosinski et al.,
2014]. Therefore, we propose to learn image representations for object recognition
using deep learning models and the self-supervised paradigm. As shown in Fig-
ure 4.2, we train a given deep learning model f to solve image jigsaws like the one
depicted in Figure 4.1. In addition to solve such a task, we also learn image fea-
tures transferable to object recognition tasks like object classification, detection and
segmentation. Then, we transfer the leaned features to the target model h by just
undergoing small modifications and finetuning in a relatively small dataset.

4.2.2 Image Jigsaws And Visual Permutation Learning

Having our self-supervised approach described, we now focus on the explanation of
the proposed auxiliary task and solver. Our goal is to learn image representations
useful for object recognition tasks using the self-supervised paradigm. Towards this
end, we first observe that objects are collections of salient parts which has certain
spatial configurations or structure. Then, we explore this structural information and
define an auxiliary task to train a deep learning model which has to learn such a
information in order to perform well in this task. More specifically, we create a
pretext task where the objective is to recover the object-parts configuration of an
image given its artificially shuffled version. Note that in order to accurately solve
such a task, the learner needs to learn what are objects, what are their parts and
how those parts fit together. This knowledge is useful to discriminate between object
categories and background which is also essential for object recognition tasks such
as object detection, classification and segmentation.

Figure 4.3 formalizes the proposed pretext task. Let us define an image X as an
ordered set of image patches {I1,1, . . . , I1,g, I2,1, . . . , I2,g, . . . , Ig,g} obtained by laying a
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Figure 4.3: The proposed pretext task for image representations learning. Note that
the proposed pretext task is an instance of the visual permutation learning problem
(discussed in Chapter 3) where the input sequences are sequences of image regions

and the ordering criterion is given by the spatial structure of objects in images.

g× g grid on top of an image and extracting random crops Ih,w of size c× c pixels
within each grid cell h, w ∈ [1, g[. In addition, let us define the artificially shuffled
version of X as X̃ where the order of the patches Ih,w were permuted by a random
generated permutation matrix P ∈ {0, 1}g2×g2

. Thus, our pretext task is in fact to
predict the matrix P from a given shuffled collection of image patches X̃ such that
P−1 = PT recovers the original image X. That is, the proposed pretext task is an
instance of the visual permutation learning problem (discussed in Chapter 3) where
the input sequences are sequences of image regions and the ordering criterion is
given by the spatial structure of objects in images.

Therefore, we follow the proposed visual permutation learning framework and
solve the proposed pretext task by learning a parametrized function fθ (·) that pre-
dicts the permutation matrix P which generated the shuffled image X̃ from a given
input image X. Furthermore, we implement the function fθ (·) as the DeepPermNet
model described in Section 3.3.3 in order to jointly learn transferable image represen-
tations. Such a model is well-suited to the problem since the learned representation
can be easily transferred to the target tasks by performing small modifications in
the network architecture and finetuning in a small dataset. Differently from exist-
ing self-supervised representation learning techniques which simplifies this kind of
pretext task by just learning to discriminate subsets of possible permutations [Doer-
sch, 2016; Misra et al., 2016; Lee et al., 2017], our approach can handle the full set of
permutations and is scalable to finer shuffling grids (e.g., 4× 4, 5× 5, and so on).
In addition, our scheme is generic and can also be used to solve different kinds of
learning-to-rank problems as discussed in Section 3.4.
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Figure 4.4: Image region sampling procedure used to avoid “shortcuts” when creat-
ing image jigsaws.

4.2.3 Avoiding “shortcuts”

It has been observed in the literature that self-supervised learning methods can ex-
ploit “shortcuts” involving information useful for solving the pretext task but not for
a target task [Doersch et al., 2015; Noroozi and Favaro, 2016]. For instance, chromatic
aberration and edge continuity are good cues for solving the visual permutation
task, but are not useful for generic object detection or image classification. In order
to avoid these “shortcuts”, we follow image preprocessing procedures described by
Doersch et al. [2015]. We first resize the images having the smallest side equal to 256
pixels. Then, we randomly crop a squared region of the image and resize to 225× 225
pixels. Then we split the resized crop into a 3× 3 grid cell, each with 75× 75 pixels.
Finally, we randomly select 64× 64 pixels tiles from each cell and train our model
as described above. Figure 4.4 presents an example of this preprocessing procedure.
This allows us to have an 11 pixel gap between tiles. Noroozi and Favaro [2016] show
improvements in the target task by using additional procedures such as augmenting
the data with gray-scale images, jittering the color channels, and increasing the gap
between sampled tiles. We did not investigate these additional procedures, but they
can be easily added to our framework.

4.3 Transfer Learning Experiments

In this section, we evaluate the proposed model for self-supervised image repre-
sentation learning. Following the literature on self-supervised pre-training [Doersch
et al., 2015; Donahue et al., 2017; Pathak et al., 2016; Noroozi and Favaro, 2016; Lars-
son et al., 2017; Ren and Jae Lee, 2018], we test our models on the commonly used
self-supervised benchmarks on the PASCAL Visual Object Challenge and compare
against supervised and self-supervised procedures for pre-training. We first train
our model on the proposed pretext task using the train split of the ImageNet dataset
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Table 4.1: Classification and detection results on PASCAL VOC 2007 test set under the
standard mean average precision (mAP), and segmentation results on the PASCAL
VOC 2012 validation set under mean intersection over union (mIU) metric. *Noroozi
and Favaro [2016] and our methods use a more computationally intensive ConvNet
architecture with a finer stride at conv1 during the self-supervised training, but we
use standard Alex-net architecture when finetune in the target task allowing a fair

comparison with all competing methods.
Pre-training Method Pretext task Cls. Det. Seg.

ImageNet Supervised 78.2 56.8 48.0
Random Gaussian None 53.3 43.4 19.8
Agrawal et al. [2015] Estimating Ego-motion 52.9 41.8 -
Doersch et al. [2015] Context Prediction 55.3 46.6 -
Wang and Gupta [2015] Visual tracking 58.4 44.0 -
Pathak et al. [2016] Context autoencoder 56.5 44.5 29.7
Donahue et al. [2017] Adversarial Learning 58.9 45.7 34.9
Zhang et al. [2016] Image colorization 65.6 47.9 35.6
Noroozi and Favaro [2016]* Image jigsaws 67.6 53.2 37.6
Owens et al. [2016] Ambient sounds 61.3 44.0 -
Bojanowski and Joulin [2017] Alignment with noisy targets 65.3 49.4 -
Noroozi et al. [2017] Counting visual primitives 67.7 51.4 36.6
Lee et al. [2017] Sorting sequences 63.8 46.9 -
Pathak et al. [2017] Motion-based segmentation 61.0 52.2 -
Zhang et al. [2017b] Cross-channel prediction 67.1 46.7 36.0
Larsson et al. [2017] Image colorization 65.9 - 38.0
Jenni and Favaro [2018] Predicting synthetic artifacts 69.8 52.5 38.1
Gidaris et al. [2018] Predicting image rotation 72.97 54.4 39.1
Kim et al. [2018] Damaged image jigsaws 69.2 52.4 39.3
Nathan Mundhenk et al. [2018] Improved context prediction 69.6 55.8 41.2
Ren and Jae Lee [2018] Multi-task 68.0 52.6 -
DeepPermNet (Sinkhorn Norm.)* Visual Permutation Learning 69.4 49.5 37.9
DeepPermNet (Bi-level Opt.)* Visual Permutation Learning 65.5 45.7 36.4

[Krizhevsky et al., 2012] as training set discarding its labels. Then, we transfer our
learned weights to standard deep learning based recognition models for object classi-
fication, detection and segmentation which are finetuned and tested in the PASCAL
Visual Object Challenge datasets. As evaluation metrics, we report the mean average
precision (mAP) on PASCAL VOC 2007 [Everingham et al., 2007] for object classifi-
cation and detection, while we report mean average intersection over union (mIU)
on PASCAL VOC 2012 [Everingham et al., 2012] for object segmentation.

It is important to emphasize that we do not use any pre-trained models or human
annotated labels when training our model in the pretext task. Instead, we train our
CNN models from scratch using random initialization and self-supervised labels.
The model is trained for 400k iterations using an initial learning rate of 0.001, which
is dropped by one-tenth every 100k iterations. We use batches of 256 sequences
each of 64× 64 image patches. In order to evaluate how well the proposed models
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can solve such a task, we use 50k images on the ImageNet validation set and apply
random permutations using the 3 × 3 grid layout. In this self-supervised setting,
DeepPermNet reaches a score of 0.72 on the Kendall-tau metric. After validating the
self-supervised training, we transfer the learned weights to initialize from Conv1 to
Conv5 layers of AlexNet [Krizhevsky et al., 2012], Fast-RCNN [Girshick, 2015] and
Fully Convolutional Network [Long et al., 2015] models and fine-tune them for ob-
ject classification, detection, and segmentation tasks respectively, using their default
training parameters. In order to make the competing methods directly comparable,
we use stride 2 in the first layer of our network during the training of visual permuta-
tion learning task, while we use a standard AlexNet (stride 4 on the first layer) when
finetune the recognition models o the target tasks. Table 4.1 presents our results.

We observe that the self-supervised methods are still behind the supervised ap-
proach, but this performance gap is gradually reducing as self-supervised methods
improve. Our DeepPermNet works as well as most of the self-supervised competi-
tors. For instance, the tested classification, detection and segmentation neural net-
work based models improve their performance in about 16%, 6%, and 18%, respec-
tively, when pretrained in our self-supervised framework. While our proposal is
marginally surpassed by very recent approaches, it outperforms its direct competitor
[Noroozi and Favaro, 2016] in object classification and segmentation by exploiting
our permutation prediction schema. In addition, DeepPermNet is a more generic
method than the method proposed by Noroozi and Favaro [2016], since our method
can be used to solve many different computer vision tasks as shown in our previous
experiments. We also notice that the bi-level approach performs slightly worse than
the Sinkhorn normalization approach in this self-supervised experiment. Perhaps,
the reason for that is computation of the gradient which requires inverting a matrix,
and can cause numerical issues.

Interestingly, when finer grid schemes are used (e.g., 4× 4), we do not observe
any improvement in the target tasks. This agrees with the ablation study presented
in [Noroozi and Favaro, 2016], which shows that the performance in the target task
increases with the total number of permutations, but decreases with the increasing of
the similarity between these permutations in their jigsaw task. Therefore, we believe
when we deal with all possible permutations and increase the grid partition, we
end up increasing the general similarity between the target permutations, which is
prejudicial for transfer learning. Perhaps, a solution to this issue is to weight the
permutations according to their average similarity to the other permutations, which
is a compelling direction for future work.
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4.4 Chapter Summary

While Chapter 3 presents the visual permutation learning framework as an approach
to learn structural information existent in data by exploring the structure of visual
permutations, the current chapter applies such a framework to learn unsupervised
image representations by exploring visual priors and regularities in the input visual
data. Towards this end, we propose a self-supervised task resembling image jigsaws
and show that a model trained to solve this task also learns image representations
transferable to object recognition tasks such as object classification, detection and
segmentation. In the context of deep learning models, this approach is very useful
since it can mitigate the need for large scale human annotated datasets which has
hampered the application of these models in complex problems.
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Chapter 5

Compositional Algebra of
Classifiers

“The moving power of mathematical invention is
not reasoning, but imagination.”

Augustus De Morgan, 1831

Chapters 3 and 4 exploited structural information in visual outputs and inputs
in order to produce more accurate image rankers and unsupervised learned image
representations, respectively. On the other hand, the current chapter leverages the
structure in the model space to propose a compostional learning framework that
resembles an algebra of visual classifiers. Aiming to overcome the closed world
assumption made by fully supervised methods for visual recognition, the proposed
framework can compose classifiers for new visual concepts without a single training
data of these concepts.

In order to start our discussion, imagine a sea-faring bird with “hooked beak” and
“large wingspan”. Most people would be thinking of an albatross. Moreover, given a
set of images of birds, the descriptive features “hooked beak” and “large wingspan”
are key for someone to identify images of albatross versus other birds even if they had
never seen an albatross before. These provide evidence that visual concepts are com-
positional and complex visual concepts like albatross are defined as a composition
of simpler visual concepts such as “hooked beak” and “large wingspan”. In addi-
tion, humans have very formal and structured ways of reasoning about compositions
such as propositional logic, predicate logic, and boolean algebra. However, the cur-
rent state-of-the-art models for recognition follow a laborious data-driven approach,
where complex concepts are learned using thousands or millions of manually labeled
examples instead of using composition. Such data greedy approach is unfeasible for
many real world applications.

In this chapter, we build on the insight that visual concepts are fundamentally
compositional and develop an algebra for combining concept classifiers. Towards
this end, we propose a composition framework inspired by boolean algebra struc-
tures such as disjunction, conjunction, and negation. More specifically, we develop
neural network modules which can learn to compose classifiers according these logi-
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Figure 5.1: Illustration of the proposed neural algebra of classifiers. Given classifiers
for primitive visual concepts such as hooked beak and large wingspan, we can com-
pose classifiers for complex concepts such as gull and albatross that are represented

by boolean expressions of these primitives.

cal operators allowing us to produce classifiers for any complex concept expressed as
a boolean expression of primitive concepts. For instance, our approach can compose
a classifier for albatross by combining classifiers for “large wingspan AND hooked
beak”. Likewise, gull’s classifier can be expressed as “(NOT large wingspan) AND
hooked beak” (Figure 5.1). Moreover, such a framework can predict unseen complex
visual concepts like humans do. For example, it is possible to identify a car made of
grass by composing a classifier for “grass AND car”, even if such a concept does not
have training data. It also allows us to recognize subclasses and specific instances of
objects without any additional annotation effort. Therefore, we can scale-up recogni-
tion systems for complex and dynamic scenarios.

Learning how to compose classifiers for unseen complex concepts from simple
visual primitives by developing a compositional algebra is a challenging task since
there is no trivial mapping between primitives and their compositions. Naively, we
can think of recognizing an albatross whenever the classifiers for large wingspan and
hooked beak fire simultaneously. However, such an approach assumes strong inde-
pendence between visual primitives and does not consider the imperfection of the
primitive classifiers or reason about correlations and cooccurrences of visual primi-
tives. Furthermore, as observed by Misra et al. [2017], the meaning of a composition
depends on the context and the particular instance being composed. For instance, the
visual appearance of “old” for bikes is completely different for people. In contrast,
our approach is learned in the classifier space exploring correlations, cooccurrences,
and contextuality between visual primitives in order to compose more accurate clas-
sifiers for complex visual concepts.

This chapter’s contributions are threefold. First, we propose a learning frame-
work for composition of classifiers. Such a framework resembles an algebra in which
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we can synthesize classifiers for any visual concept described as boolean expression
of visual primitives. Second, we develop a neural network based model which min-
imizes the classification error of a subset of visual compositions and generalizes for
unseen compositions. Third, we show how these modules can be used recursively to
produce classifiers for complex concepts expressed as boolean expressions of visual
primitives.

We conduct several experiments to show the efficacy of our approach. We show
that our method is able to synthesize classifiers according to simple composition rules
by learning how to compose concepts from a subset of primitive compositions and
generalizing for compositions not seen during training (Section 5.3.2). In addition,
our approach naturally extends to complex compositions by recursively applying our
learned neural network modules (Section 5.3.3). On all of these settings, our method
outperforms standard baselines. Finally, we evaluate qualitatively some interesting
properties of our method (Section 5.3.4).

5.1 Compositionality in Visual Recognition

The principle of compositionality says that the meaning of a complex concept is
determined by the meanings of its constituent concepts and the rules used to combine
them [Frege, 1948; Boole, 1854; Burnyeat et al., 1990]. For instance, written language
is built of symbols which form syllables, words, sentences, and texts. Likewise,
visual data can be decomposed into scene, objects, textures and pixels. The principle
is pervasive in our world and have been studied extensively by different scientific
communities ranging from mathematics to philosophy of language. In this chapter,
we study compositionality in the context of visual recognition.

Viewing objects as collections of known parts at familiar relative locations may
be the most common way to incorporate compositionality into visual recognition
systems. For instance, deformable parts model [Felzenszwalb et al., 2010; Girshick
et al., 2011], and-or graphs [Wu and Zhu, 2011; Si and Zhu, 2013; Zhu et al., 2008;
Tang et al., 2017], dictionary learning [Tu et al., 2005; Zhu et al., 2010, 2007], and
self-supervised representation learning [Doersch et al., 2015; Santa Cruz et al., 2017;
Fernando et al., 2017] techniques are built over this intuition. Likewise, scenes can
be seen as hierarchical compositions of concepts in different abstraction levels. Then,
convolutional neural networks [Zeiler and Fergus, 2014; Simonyan and Zisserman,
2014b] and recurrent neural networks [Hochreiter and Schmidhuber, 1997; Chung
et al., 2014; Socher et al., 2011] can also be seen as compositional models. Differently,
we focus in composing classifiers for complex concepts that can be expressed as
boolean expression of primitive visual concepts. For instance, our approach is able
to classify a specific instance given its visual attributes even if such an instance is not
present in the training set.

It is important to note that compositionality helps to reduce the complexity of
some problems by decomposing them in subproblems which allow more tractable
solutions. For instance, Andreas et al. [2016] and Hu et al. [2017] explore the structure
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of natural language questions in order to define a set of simpler problems which can
be solved by simple neural networks. Neelakantan et al. [2016], proposed a neural
network to induce programs of simple operations to answer questions which involve
logic and arithmetic reasoning. Faktor and Irani [2012, 2013] use the “similarity by
composition” framework [Boiman and Irani, 2007] to perform clustering and object
co-segmentation. Likewise, we decompose the problem of recognizing any specific
instances of objects by the problem of composing a classifier according to simple
rules from its individual visual primitives.

Closely related to our work, Misra et al. [2017] show the importance of context
in composition of object and attributes. More specifically, they argue that the visual
interpretation of attributes depends on the objects they are coupled with. For in-
stance, an old bike has different visual features than an old computer. Building on
this intuition, the authors propose a transformation function to map from object and
attribute classifiers to the composition of classifiers. Thus, their scheme can only syn-
thesize classifiers for visual concepts like “red wine”, “large tv”, and “small modern
cellphone”. In contrast, we develop a generic framework to combine any number of
concept classifiers according to arbitrary boolean expressions. Such a framework pro-
vides richer expressiveness since we are able to compose classifiers for more complex
concepts like “red or blue socks without holes”.

The problem of classifying unseen visual concepts is also known as zero-shot
classification [Palatucci et al., 2009; Lampert et al., 2009; Lei Ba et al., 2015; Frome
et al., 2013]. However, zero-shot classifiers are only able to recognize unseen object
classes, while our proposed framework is also able to recognize unseen groups, sub-
groups, and specific instances of objects. Furthermore, we do not make assumptions
about the existence of an external source of knowledge such as class-attributes rela-
tionship [Lampert et al., 2009], text corpus [Lei Ba et al., 2015], or language models
[Frome et al., 2013]. We explore compositionality in the visual domain and other
visual priors, such as co-occurrence and dependence of visual attributes.

5.2 Neural Algebra Of Classifiers

In this section, we explain the proposed neural algebra of classifiers. We start by
formalizing the problem of classifier composition in an algebraic perspective. Then,
we describe our learning algorithm, model architecture, and inference pipeline.

5.2.1 Problem Formulation

Our problem consists of classifying images according to complex visual concepts ex-
pressed as boolean algebra of a set of primitives. Initially, let us assume we have a set
of known visual concepts, named primitives, like socks (S), red (R), blue (B) and holes
(H). In addition, consider basic composition rules inspired by boolean operators: (∧)
that identifies whether two primitives are depicted in the image simultaneously, (∨)
which denotes if the image has at least one of the primitives, and (¬) which accepts
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all images which a primitive is not depicted. Then, what is the classifier for a com-
plex visual concept expressed by multiple compositions of primitives and these rules.
For instance, what is the classifier for “red or blue socks without holes” described by
the expression “S ∧ (B ∨ R) ∧ (¬ H)”.

Formally, let us define a set of primitives P = {pi}M
i=1. We can express com-

plex concepts by forming arbitrary expressions recursively combining primitives with
composition rules O = {¬,∧,∨}. Note that this set of rules is a complete functional
set, i.e., any propositional expression of primitives can be written in terms of these
rules. Then, our objective can be summarized as learning a parametrized function,
fθ (·) : E → C that maps from the space of expressions E to a space of binary classi-
fiers C. In other words, we want the function fθ (·) be able to synthesize a classifier
for any given expression.

Without loss of generality, we will explain the details of our approach for the case
of linear classifiers, but the same formulation can be used to synthesize non-linear or
kernelized classifiers. Thus, we define fθ (·) as,

ŵe = fθ(e) (5.1)

where ŵe ∈ C is a linear classifier, i.e., separating hyperplane, that distinguishes
positive and negative samples for an expression and θ are the function parameters.

5.2.2 Learning Objective

In order to efficiently learn the proposed mapping function, we need to represent
the visual content of images and the semantic meaning of primitives in a compact
way. Towards this end, we define hφ ∈ RD as a parametrized feature extractor which
computes a vector representation that summarizes all visual features of a given image
and φ is the set of parameters. Likewise, we represent all primitives by classifiers
trained to recognize images that depict them. Since we focus on linear classifiers in
this chapter, we represent every primitive p by the separating hyperplane parameters
wp ∈ RD, e.g., obtained by training an one-vs-all linear SVM classifier on the feature
representation of images.

Note that boolean expressions are evaluated by decomposing them into a se-
quence of simpler terms and evaluating these terms recursively. For instance, the ex-
pression S∧ (B∨ R)∧ (¬H) can be evaluated by recursively evaluating the sequence
of simpler expressions (B ∨ R), S ∧ (B ∨ R), ¬H, ((S ∧ (B ∨ R)) ∧ (¬H)). Such a de-
composition can be computed efficiently by representing expressions as binary trees
and parsing their nodes in post-order. Then, we propose to model the function fθ (·)
as a set of composition functions g∧ (·), g∨ (·), g¬ (·). In other words, the function
fθ (·) is computed by decomposing an expression in simple terms and applying the
composition functions accordingly.

These composition functions g∗ : C × C → C are auto-regressive models which
maps from and to the classifier space. For instance, the conjunctive composition
function g∧ (·), given two concepts as input like “Socks” and “Red” represented in
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the classifier space by ws, wr ∈ RD, should compute the classifier ws ∧ r ∈ RD that
recognizes when both concepts are present in a image simultaneously. Similarly, the
functions g∨ (·) and g¬ (·) should compute the disjunction and negation in classifier
space, respectively.

We also observe that some of these composition functions can be defined ana-
lytically or in terms of other composition functions. More specifically, the negation
consists of just inverting the separating hyperplane and the disjunction can be de-
rived using De Morgan’s laws. Then, we propose to implement these functions as

g∧θ (wa, wb) = Neural Network(wa, wb),

g¬(w) = −w,

g∨ (wa, wb) = g¬
(

g∧ (g¬ (wa) , g¬ (wb))
)

,

(5.2)

where the conjunctive composition g∧θ (·) is a neural network learned from data and
θ are the learnable parameters.1 Therefore, the learning of function fθ (·) is decom-
posed on the learning of these composition functions.

Following these ideas, let us define a subset of training expressions {ek}K
j=1 ⊂ E

composed by composition rules O and primitives P . Note that such a subset is much
smaller than all possible expressions that can be formed by composing these primi-
tives. Likewise, we define a set of training images {(xi, yi) | xi ∈ I , yi ∈ {0, 1}K}N

i=1
with the ground-truth label yij denoting whether the image xi is a positive example
for the expression ej. Then, learning the function fθ (·) can be defined as,

minimize
θ,φ

1
KN

K

∑
j=1

N

∑
i=1

α1∆
(

fθ(ej)
Thφ (xi) , yij

)
+

α2

2

∥∥ fθ(ej)
∥∥2

2 + α3R(θ), (5.3)

where ∆(·, ·) is a classification loss function, R (·) is some regularization function
and {θ, φ} is the set of learnable parameters. We also have the hyper-parameters
α ∈ R3 which controls how our model correctly fit the training data (α1), regularizes
for training expressions (α2), and for unknown expressions (α3). The idea is to learn
how to synthesize classifiers that correctly classify images according to the input
expressions even if the expressions had not been seen during training.

It is important to note that such a formulation aims to explore semantic similarity
on classifiers space and the visual compositionality principle in order to make our
learning problem easier to solve. We use a relative small subset of expressions to
learn our proposed mapping function and rely on the classifier similarity to gen-
eralize for unknown expressions. Likewise, we explore visual compositionality by
decomposing training expressions in simpler expressions and jointly learning the
composition functions.
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Figure 5.2: Inference steps for the visual concept “red or blue socks without holes”
expressed as the boolean expression of primitives “S ∧ (B ∨ R) ∧ (¬ H)”. The result-
ing compositional function is: fθ(e) = g∧ (g∧ (ws, g∨ (wb, wr)) , g¬(wh)). The images

reads from top to bottom and from left to right.

5.2.3 Inference Algorithm

As alluded to above, our main goal is to produce classifiers for boolean expressions
of primitives. These expressions can be represented by a tree where composition
rules are nodes and primitives are leaves. Thus, our inference consists of parsing the
expression tree in post-order and applying the composition functions accordingly in
order to end up with the final classifier just after parsing the root (see the example
in Figure 5.2).

Then, we can compute the classifier score for an image given an expression by:

s = fθ(e)Thφ(x) (5.4)

This score reflects the compatibility between the expression and the image. We want
this score to be high only if the image contains the complex concept described by the
expression e and low otherwise. As an example, for the expression “S ∧ (B ∨ R) ∧
¬H” we want the score s to be high only for images containing blue or red socks
without holes and want it to be low for images containing any other concept.

5.2.4 Model and Implementation Details

We propose to implement the conjunctive composition function g∧θ (·) and the fea-
ture extractor hφ (·) as a multilayer perceptron (MLP) [Haykin et al., 2009] network
and VGG-16 convolutional neural network [Simonyan and Zisserman, 2014b] respec-
tively. We represent images with 4096-dimensional feature vectors computed by the

1Equivalently, we could have defined g∨ by the neural network and g∧ using De Morgan’s laws.
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FC6-layer of the VGG-16 network pretrained on ImageNet [Russakovsky et al., 2015].
Consequently, the primitives are represented by 4097-dimensional vector obtained
from training linear SVMs on these features. Since the bias can be implemented
by adding a +1 fixed feature to image representation vectors, g∧θ (·) is a MLP net-
work that have (2 × 4097) inputs and two fully connected layers with outputs of
size (1.5× 4097) and (4097), respectively. We use the LeakyReLU non-linearity, with
slope set to 0.1, in between the layers and linear activation on the outputs. Figure 5.3
shows our neural network architecture in details.

During training, we approximate the objective Equation 5.3 by batches of 32 ex-
pressions, 5 positive and 5 negative images for each expression sampled uniformly.
We first train our neural algebra of classifiers module alone during 50 epochs, then
we finetune the features jointly during 10 epochs more. Since the primitives are
represented by linear SVM classifiers, we decide to use the hinge loss,

∆
(
sij, yij

)
= max(1− yijsij)

where sij is the score assigned to the image xi by the classifier predicted for the
expression ej. In addition, we use the standard `2 regularization in the network
weights as our regularization function R (·).

5.3 Experiments

We now evaluate the performance of our method and compare against several base-
lines. We first describe the experimental setup, datasets, metrics, and baselines used
in our experiments. Then, we analyze how effectively our model can compose clas-
sifiers for simple and arbitrary compositions of concepts in addition to presenting a
qualitative evaluation of our method.

5.3.1 Experimental Setup

We are interested in the task of predicting whether a given image contains the com-
plex concept described by a boolean expression of primitives which may not have any
training data. Towards this end, we first define two disjoint sets of boolean expres-
sions of primitives named “training expressions” and “test expressions” and three
disjoint sets of images named “training images”, “validation images” and “test im-
ages”. Second, we learn the primitive representation, train our model and baselines
using training images and training expressions. Then, we evaluate the performance
of our method and baselines classifying images on the validation set according to
training expressions, named “known expressions performance”, and classifying im-
ages on the test set according to test expressions, named “unknown expressions
performance”. The former suggests how well a model learns to compose classifiers
and the latter how well a model generalizes for expressions not seen in training.
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Datasets. We use the CUB-200 Birds (CUB-200) [Wah et al., 2011] and Animal With
Attributes 2 (AwA2) [Xian et al., 2017] datasets in our experiments. Since none of
these datasets were designed for our purpose, we split these datasets in order to per-
form controlled experiments. First, we compute all possible binary conjunctive and
disjunctive expressions of primitives and filter out the ones that do not have reason-
able amount of positive and negative images. Then, we randomly split the images
between train, validation, and test images making sure that every expression and
primitive have reasonable amounts of positive and negative samples in each image
split. As a result, we create approximately 3k training expressions and 1k test expres-
sions using 250 primitives for the CUB-200 dataset, while we create approximately
1.5k training and 600 test expressions using 80 primitives for the AwA2 dataset. In
order to make easier to reproduce our results, the experiment code and these data
splits are available in the first author’s homepage.

Metrics. A boolean expression of primitives defines a binary classification problem
where images are classified as relevant or irrelevant for the visual concept described.
Therefore, we use well-known evaluation metrics of image retrieval and binary clas-
sification. More specifically, we use the mean average precision (MAP), area under
the ROC curve (AUC) and equal error rate (EER). We compute these metrics globally
in order to take the data imbalance in account since some expressions are naturally
rarer than others.

Baselines. We compare our method to several baselines in order to evaluate empir-
ically how well we can compose classifiers for complex concepts:

• Chance: This is an empirical lower bound for the problem and consists of
assigning random scores for image and expression pairs.

• Supervised: This is an empirical upper bound for the problem and consists
of training SVMs for every training expression. Thus, it is a fully supervised
approach which can not be extended for unknown expressions. Therefore, we
just report its performance for known expressions.

• Independent Classifiers: This baseline assumes that visual concepts are inde-
pendent events and uses basic probability rules to estimate the probability of
a complex concept being depicted in an image. They are defined according to
the following rules,

p(v1 ∧ v2) = p(v1)p(v2)

p(v1 ∨ v2) = p(v1) + p(v2)− p(v1)p(v2)

p(¬ v) = 1− p(v)

(5.5)

where p(v) is the probability of a given image has the primitive v estimated by
the classifier wv. Note that in order to estimate these probabilities we calibrate
the learned SVMs using a small held-out subset of the training images (≈ 10%)
and Platt’s calibration method [Platt et al., 1999].
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Table 5.1: Evaluating known/unknown disjunctive and conjunctive expressions on
the CUB-200 Birds dataset.

Disjunctive Expressions Conjunctive Expressions
Known Exp. Unknown Exp. Known Exp. Unknown Exp.

Metrics MAP AUC EER MAP AUC EER MAP AUC EER MAP AUC EER
Chance 39.70 50.00 50.0 40.60 50.00 50.0 4.55 50.0 50.0 4.59 50.0 50.0
Supervised 65.25 74.76 31.58 - - - 22.87 78.02 29.69 - - -
Independent 58.73 68.39 36.76 60.66 69.28 36.10 17.23 77.22 29.94 19.16 78.00 29.28
Neural Alg. Classifiers 70.10 77.36 29.44 71.18 77.76 29.04 23.09 81.54 26.36 23.87 81.98 25.85

5.3.2 Simple Binary Expressions

In this experiment, we focus on evaluating how well our model can learn to compose
classifiers for simple binary conjunctive and disjunctive expressions. We follow the
procedure explained in Section 5.3.1 and evaluate our model and baselines on both
cases separately. We do not report the result with simple negative expressions since
it is a trivial mapping in classifier space as explained in Section 5.2.

We present the results for our methods and baselines on the CUB-200 and AwA2
datasets in Table 5.1 and Table 5.2 respectively. As expected, the supervised method
presents good performance on both types of expressions but it is limited to expres-
sions known at training phase. Thus, it can not be used in large scale recognition
problems where the number of complex concepts that can be composed is very large.

On the other hand, the independent approach seems to be a strong baseline. It
produces slightly worse results than the supervised approach for known expression,
mainly on conjunctive expressions, while can classify images according to unknown
expressions. However, we note that such a performance is due to the high accuracy
of the primitive classifiers, it can reach the AUC of approximately 85% for the CUB-
200 and 95% for the AwA2 when classifying validation and test images according
to primitive concepts. Then, its performance should decrease drastically in more
challenging datasets where the primitive classifiers are often less accurate.

However, our method shows significant superior performance on every setting
on both datasets. For instance, the proposed method reaches improvements around
10% for disjunctive expressions and 5% for conjunctive expressions in the CUB-200
dataset. In fact, it is able to surpass the supervised methods on known expression
since it allows to learn specific features for complex compositions in addition to
reason about correlations between primitives. It is also important to mention that our
hypothesis of implementing the disjunctive composition function as the combination
of the negation and conjunction according to the De Morgan’s laws is verified, since
we reach similar performance, when we train a specific MLP network for disjunctive
expressions.

Despite the differences highlighted in Section 5.1, we acknowledge the similarity
between the transformation function proposed by Misra et al. [2017] and our AND
composition function. More specifically, we both learn an MLP, but we use differ-
ent network architectures and optimize different objectives. Then, we evaluate their
model in our simple binary conjunctive expression experiment, the only one that
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Table 5.2: Evaluating known/unknown disjunctive and conjunctive expressions on
the AwA2 dataset.

Disjunctive Expressions Conjunctive Expressions
Known Exp. Unknown Exp. Known Exp. Unknown Exp.

Metrics MAP AUC EER MAP AUC EER MAP AUC EER MAP AUC EER
Chance 53.19 50.0 50.0 53.04 50.0 50.0 18.77 50.0 50.0 21.17 50.0 50.0
Supervised 97.47 97.20 8.13 - - - 94.90 98.53 6.00 - - -
Independent 97.28 97.12 8.70 97.86 97.58 6.77 93.95 98.13 6.80 93.90 97.87 7.36
Neural Alg. Classifiers 98.84 98.67 5.84 99.05 98.91 5.24 95.95 98.79 5.29 96.50 98.81 5.34

their model is able to handle. Despite their model having approximately 2.7x more
learnable parameters, it performs slightly worse than our AND composition (at least
1% in most of the metrics used) which demonstrates the efficiency of our architecture
and loss function.

5.3.3 Complex Expressions

From previous experiments, we can conclude that our model is able to learn compo-
sition rules for simple binary expressions. However, we still need to show that these
models are suitable for arbitrary expressions. According to boolean algebra, every
boolean expression can be written in generic forms such as Normal Disjunctive From
(NDF) and Normal Conjunctive form (NCF). The former consists of an OR of ANDs,
e.g., (p1 ∧ q1) ∨ (p2 ∧ q2) ∨ . . . ∨ (pc ∧ qc), and the latter consists of an AND of ORs,
e.g., (p1 ∨ q1) ∧ (p2 ∨ q2) ∧ . . . ∧ (pc ∨ qc) where p and q are visual primitives which
may appear negated and c is the number of simple terms in those expressions. From
the visual recognition perspective, c can be seen as an indicator of the complexity of
an expression since long expressions usually defines more specific visual concepts
than short expressions. For instance, (Blue ∨ Red) ∧ Socks ∧ (¬Holes) is a more spe-
cific visual concept than any of its subexpressions such as ((Blue∨ Red)∧ Socks) and
(Socks ∧ (¬Holes)).

Since it is straightforward to convert any expression for both normal forms [Monk
and Bonnet, 1989], we decide to examine the performance of our method and base-
lines on complex expressions in the normal conjunctive form. Towards this end, we
randomly generate 1k test CNF expressions of complexity 2, 4, 6, 8, 10 from sim-
ple unknown disjunctive expressions. In order to avoid normalization issues when
combining linear classifiers produced by our method and the primitives classifiers,
we finetune our method using training images and CNF expressions of complexity
4 formed from known simple disjunctive expressions. Then, we use our method and
baselines to classify test images according to the sampled CNF expressions of dif-
ferent complexities. Again, the finetune and test expression sets are disjoint as well
as the training and test image sets. We also do not evaluate the supervised baseline
because we do not have training images for the test expressions.

In Figure 5.4, we plot baselines and our method performance in terms of mean
average precision, area under the ROC curve and equal error rate on CNF expres-
sions of different complexities composed by unknown simple binary expressions.
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(a) CUB-200
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Figure 5.4: Performance of the proposed method and baselines on classifying images
according to unknown expressions of different complexity described in conjunctive
normal form (CNF). The first column presents the results for CUB-200 dataset, while
the second column presents the results for AwA2 dataset. In the first row the perfor-
mance in measured in terms of mean average precision (higher is better), while the
second row reports the area under the ROC curve (higher is better), and the third

row reports the equal error rate (lower is better).
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As expected, the performance of all evaluated methods decrease as we increase the
complexity of the test expressions. This is more noticeable in our method which sta-
bilizes for complexity greater or equal to 6. However, we consistently outperform the
baselines on classifying images according to expressions of different complexities in
both datasets.

5.3.4 Qualitative Evaluation

We now evaluate the proposed method qualitatively by visualizing the classification
results of some interesting expressions. More specifically, we classify the test images
by scoring them according to manually picked unknown expressions and threshold-
ing using the equal error rate threshold. In Figure 5.5, we show some randomly
selected true positives (TP), false positives (FP), false negatives (FN) and true nega-
tives (TN) for every selected expression.

Looking back to our motivational example and analyzing the ground truth of
CUB-200 dataset, we can state that albatrosses and gulls are birds with hooked beak
(HB), black eyes (BE), solid wings pattern (WPS) which do not have black upper
tail (UTB) or gray wings (WG). We examine such a statement in the first row of
Figure 5.5 by analyzing the classification results produced by our method for the
respective boolean expression of these primitives. We note that most of the positive
predictions are from different species of albatrosses and gulls. Furthermore, long
wings (LW) is a good visual feature to discriminate albatrosses from gulls. Then, we
add such a term in the boolean expression and note the predominance of gulls in the
predicted positive examples in the second row of Figure 5.5. This example shows
qualitatively that our approach is able to group and discriminate objects according
to different visual features.

In addition, we can also use our method to find specific combinations of visual
features. For instance, consider the following visual features: blue breast (BB), red
breast (RB), yellow breast (YB), blue crown (BC), red crown (RC) and yellow crown
(YC). In the third row of Figure 5.5, we are looking for birds that have the breast
and crown of the same color which could be blue, red or yellow. While in the fourth
row of Figure 5.5, we aim for a more specific combinations of these visual primitives
like birds that have different breast and crown color. We can note that the predicted
positives are predominately unicolor in the former expression, while they are more
colorful in the latter one. Furthermore, the false positives usually present part of
the desired composition of visual primitives which is perhaps a consequence of the
compositional principle.

From the perspective of boolean algebra, two equivalent expressions must have
the same truth table. Translating to our context, we can say that two equivalent com-
position of primitives should have similar classification results. In order to demon-
strate such a property, we express the set of big (B) and fast (F) animals that are not
hunter (H) in two different ways using De Morgan’s Laws: (B AND F) AND (NOT
H) and (NOT (S OR SL)) AND (NOT H) where small (S) and slow (SL) are the op-
posite concepts of fast and big respectively. As we can see in the last two rows of
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Figure 5.5, the positive and negative predictions have basically instances from the
same classes such as gorillas, deers, horses and dolphins for the positives while ele-
phants, tigers and lions for the negatives. Therefore, our proposed method spans
an algebra of visual primitives where complex visual concepts can be described by
different compositions.

5.4 Chapter Summary

While the Chapters 3 and 4 provide an effective way to learn visual recognition sys-
tems on small human annotated datasets by leveraging the structure on the visual
input and output data, the current chapter provides an approach to scale-up these
recognition systems to an immeasurable number of visual concepts. Towards this
end, we leverage the structural information present on visual classifiers to tackle the
problem of learning to synthesize classifiers for complex visual concepts expressed in
terms of visual primitives. We formulated such a problem as an algebra of classifiers
where the composition rules are learned from data and complex visual concepts are
expressed by boolean expressions of primitives. Through a variety of experiments,
we show that our framework can synthesize accurate classifiers for known expres-
sions, and generalize to arbitrary unknown expressions. It consistently outperforms
the baselines across different metrics and datasets. Besides, we demonstrate qualita-
tively different queries that can be answered by our model.

Going forward, one compelling direction of investigation is to extend our model
for weighted compositions of primitives where we would be able to assign the impor-
tance of visual primitives in the composed visual concept. Such a framework would
benefit learning-to-rank problems such as image ranking and recommender systems.
As an example of application, search queries for online shopping could be described
as weighted compositions of visual attributes and the permutation learning frame-
work described in Chapter 3 could be adapted to rank products according tho these
compositions. Another important direction is to perform detection and segmentation
according to compositions of visual primitives.
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Figure 5.5: Randomly selected true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN) test images
classified according to manually selected unknown expressions of the following visual primitives: hooked beak (HB), black eyes
(BE), solid wings pattern (WPS), long wings (LW), blue breast (BB), red breast (RB), yellow breast (YB), blue crown (BC), red

crown (RC), yellow crown (YC), big (B), fast (F), hunter (H), small (S) and slow (SL).

D
raft

C
opy

–
13

D
ecem

ber
2019



Chapter 6

Activity Recognition as Inferring
Action Patterns

“Information is the resolution of uncertainty.”

Claude Shannon, 1948

In the previous chapters, we have explored structural information and visual pri-
ors existent in the input, output and model spaces in order to produce better image
rankers, unsupervised image representations and zero-shot image classifiers. While
these approaches allow current deep learning models to work in difficult scenarios
where annotated data is scarce or the target application has an uncountable number
of visual concepts, they still require learning new models which is cumbersome. The
current chapter instead proposes to extend existing models for more rich and diffi-
cult tasks without requiring new machine learning models or additional data anno-
tation. More specifically, we present a method to recognize compositional activities
expressed in terms of regular expressions of simpler actions in videos. To this end,
we derive a probabilistic inference framework which provides robust predictions of
complex activities in videos with little additional computational effort over standard
action classifiers. The proposed approach allows us to unambiguously distinguish
between fine-grained actions, retrieve very specific activity instances, and recognize
complex composites of actions that may not have a single training sample.

Let us start this chapter by discussing how action recognition has been studied
by the computer vision community lately [Kang and Wildes, 2016; Herath et al.,
2017]. This problem refers to the act of classifying or localizing an action of interest
in videos. In this context, actions can range from being simple and atomic like
“running”, passing through complex activities with a lot of variability like “cooking a
meal”, to group activities such as a coordinated movement in team sports. However,
the current state-of-the-art models for action recognition tackle these problems in a
very limited way where huge volumes of videos are annotated with a limited number
of action labels in order to train machine learning models that aim to recognize
the annotated actions in new video instances. This paradigm presents notorious
limitations since recognizing new action categories requires annotating hundreds of
videos and retraining computationally expensive machine learning models.

87
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Figure 6.1: A complex activity can be described by natural language queries, which
are often incomplete and have vague and/or ambiguous temporal relations between
the constituent actions. For instance, option (a) does not mention all the actions in-
volved, and it is not clear from options (b) and (c) whether the actions happen simul-
taneously or sequentially. In contrast, a regular expression of primitive actions can
precisely describe the activity of interest. For instance, given the primitive actions
“talking on the phone” (tp), “holding a jacket” (hj), “dressing” (d), and “brushing
hair” (bh), the regular expression {tp, hj}+ � {tp, d}+ � {tp, bh}+ precisely de-
scribes the activity depicted in the frames, where the sets of primitive actions, the
regular language operator ‘concatenation’ (�) and the operator ‘one-or-more repeti-

tion’ (+) define concurrent, sequential and recurrent actions, respectively.

Recent methods try to circumvent these limitations by leveraging textual data,
allowing zero-shot action classification [Jain et al., 2015; Mettes and Snoek, 2017],
action localization [Gao et al., 2017; Hendricks et al., 2017; Liu et al., 2018], and ac-
tor and action segmentation [Gavrilyuk et al., 2018] from natural language sentences
and word vector representations. However, natural language descriptions are inher-
ently ambiguous and not suitable to describe the activity of interest precisely. As an
example, all natural language descriptions listed for the video shown in Figure 6.1
are true, but none of them describe the sequence of events precisely. Description (a)
is incomplete since it does not mention all the events that occurs, and it is not clear
from descriptions (b) and (c) whether the actions happen simultaneously or sequen-
tially, e.g., , it is not clear whether the man is talking on the phone at the same time
he is holding the jacket.

In this chapter, we instead build on the insight that complex activities are funda-
mentally compositional action patterns and develop a probabilistic inference frame-
work to unambiguously describe and efficiently recognize compositional activities in
videos. Towards this end, we first propose to describe complex activities as regular
expressions of simple primitive actions using regular language operators. Then, we de-

Draft Copy – 13 December 2019



§6.1 Scaling-Up Action Recognition Models 89

velop a probabilistic model that can recognize these regular expressions in videos.
Returning to the example in Figure 6.1, given the primitive actions “talking on the
phone” (tp), “holding a jacket” (hj), “dressing” (d), and “brushing hair” (bh), the
regular expression {tp, hj}+ � {tp, d}+ � {tp, bh}+ precisely describes the ac-
tivity depicted in the video, where the sets of primitive actions ({·}), the regular
language operators ‘concatenation’ (�) and ‘one-or-more repetition’ (+) define con-
current, sequential, and recurrent actions respectively.

In summary, the proposed approach provides a framework to precisely describe
complex activities and recognize instances of them in videos. For example, our ap-
proach can recognize the activity of “making a caesar salad” by exploiting action
classifiers for “boiling eggs”, “chopping leaves”, and “preparing dressing”. More-
over, such a framework is able to predict complex unseen activities. For example, it
is possible to identify an event of “Olympic goal” in a soccer game from primitive
actions such as “corner kick”, “ball traveling”, and “goal”, even if such a complex ac-
tivity does not exist in the training data. Our framework can also express alternative
ways an activity can be performed and form groups of activities by using the alter-
nation operator (|). Therefore, our framework scales up action recognition systems
for complex and dynamic scenarios.

However, the development of such a probabilistic framework is a challenging
task. Naively, we can think of recognizing a compositional activity whenever a set of
primitive action classifiers activate simultaneously, regardless of the temporal rela-
tions between primitives. However, this naive approach cannot express the sequential
or alternative order of primitive actions. In contrast, the proposed approach pro-
vides a formal language that allows us to express these temporal relations between
primitives in order to recognize complex activities, specific instances, and groups of
activities without additional annotations.

The current chapter contributions are threefold. First, we propose rich composi-
tional activity recognition as the task of recognizing complex activities described by
patterns of primitive actions in videos. We formulate a framework for this task that
resembles a regular expression engine in which we can perform inference for any ac-
tivity that can be described by a regular expression of primitive actions. Second, we
derive deterministic and probabilistic models for solving the inference problem based
on uncertain classifiers. Third, we present an extensive evaluation of the proposed
models under different scenarios simulated by a synthetic dataset, in addition to
applications in trimmed and untrimmed video composite action classification using
challenge datasets such as MultiTHUMOS [Yeung et al., 2017] and Charades [Sig-
urdsson et al., 2016].

6.1 Scaling-Up Action Recognition Models

State-of-the-art action recognition methods aim to recognize actions from a prede-
fined fixed vocabulary of actions [Bilen et al., 2017; Carreira and Zisserman, 2017;
Donahue et al., 2015; Wang and Cherian, 2018] and ignore the recognition of long
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tailed distribution of complex activities. In this section, we review methods that
attempt to overcome this limitation through zero-shot, compositional, and natural
language-based learning approaches.

Zero-shot learning consists of recognizing unseen visual concepts by exploring
some external source of information [Lampert et al., 2014]. In the context of zero-
shot action recognition, different external sources of information have been explored
such as action–attribute relationship [Liu et al., 2011], object annotations [Jain et al.,
2015], word embeddings learned on a large corpus [Xu et al., 2017c], and textual
descriptions from web data [Habibian et al., 2017]. These models, however, still
nurture the interpretation of action recognition as the assignment of simple action
labels. In contrast, we propose a compositional view of action recognition where
complex actions are inferred from simple primitive actions.

Recently, we have seen the success of vision-language models in related prob-
lems in the image domain [Hu et al., 2016b,a; Li et al., 2017]. Inspired by the success
of these approaches, Gao et al. [2017] and Hendricks et al. [2017] strive to local-
ize activities by natural language queries using cross-model alignment frameworks,
Gavrilyuk et al. [2018] propose an encoder-decoder neural network architecture to
perform action and actor segmentation from natural language sentences, and Liu
et al. [2018] propose a modular network for the task of video retrieval using natural
language queries. We argue, however, that natural language sentences may lead to
ambiguous descriptions of complex activities as shown in Figure 6.1, which makes
it difficult to find correct matches between videos and queries. In order to solve this
problem, we provide a regular language to unambiguously describe and efficiently
infer compositional activities in videos.

Serving as inspirations for our approach, the innovative works of İkizler and
Forsyth [2008] and Vo and Bobick [2014] recognize human-centered activities using
compositions of primitive actions. In addition to mainly focusing on human-centered
activity recognition problems, these works differ from ours in the expressiveness of
the language used to specify the activity query. The former uses strings of primitive
actions, while the latter use a simplified context-free grammar whose production rules
are AND-rules or OR-rules without recursion. These approaches can only express
sequential or alternative primitive actions of fixed length. In contrast, we propose
a more expressive and complete language for querying complex activities. More
specifically, we propose regular expressions on subsets of primitive actions that can ex-
press sequential, concurrent, alternative, and recursive actions. Furthermore, our
approach focuses on zero-shot recognition of complex activities, unlike these ap-
proaches which require training data for the queried activities.

It is also important to distinguish our approach from ones that perform struc-
tured prediction of sequences of primitive actions from a fixed vocabulary, leverag-
ing training data of human annotated action composites. For instance, Richard and
Gall [2016] use a language model while Piergiovanni and Ryoo [2018] use tempo-
ral filters to learn temporal and contextual correlations between primitive actions in
order to better infer sequences of these primitive actions in videos. Note that these
models address the problem of recognizing primitive actions from a fixed vocabulary
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and they cannot automatically infer whether an unseen action composite occurs in a
given video, unlike our proposed model.

6.2 Inferring Action Patterns in Videos

In this section, we start by formalizing the problem of recognizing complex activities
described by regular expressions of primitive actions. Then we derive our approach
starting from a deterministic model and evolving to a probabilistic framework where
the uncertainty of the predictions are taken into account.

6.2.1 Action Patterns Formulation

Our problem consists of recognizing activities expressed as regular expressions of
subsets of primitive actions. We denote these expressions as action patterns. By way
of example, let us assume we have a set of known actions, called primitives, like
“driving” (d), “getting in the car” (gc), “talking on the cellphone” (tc), “talking to
someone” (ts). In addition, consider three basic composition rules inspired by the
standard regular expressions operators: concatenation (�) which defines sequences
of patterns, alternation (|) which builds a union of patterns, and Kleene star (?)
which allow us to express recurrent patterns. Other useful operators can be defined
in terms of these ones, e.g., one-or-more repetition (+) is defined as x+ , x � x?.
The problem then becomes how to recognize whether a video depicts a complex
activity described by recursive compositions of subsets of primitive actions and these
operators. For instance, can we find on YouTube “someone driving and talking on
the phone or to someone, repeatedly, just after getting in the car”, which can be
described without ambiguity as “agc � ({ad, atc} | {ad, ats})?”.

Formally, let us define a set of primitive actions A = {ai}M
i=1. We can express a

complex activity by forming action patterns, an arbitrary regular expression r com-
bining subsets of primitives w ∈ P (A), where P (A) is the power-set of A, with the
aforementioned composition rules O = {�, |, ?}. Note that this formulation expresses
concurrent actions as subsets of primitive actions. Consequently, background actions
and non-action video segments are represented by the null primitive ∅ ∈ P (A). Our
goal then is to model a function fr : V → [0, 1] that assigns high values to a video
v ∈ V , where V is the set of all videos, if it depicts the action pattern described by
the regular expression r and low values otherwise.

It is also important to mention that we assume the set of primitive actions A used
to specify the action patterns are defined a priori. This set is a design decision highly
dependent of the target application. For instance, in a soccer match broadcasting
application, primitive actions like shooting, header, and tackling are very important
to specify meaningful events. On the other hand, in a surveillance application, prim-
itive actions like ’breaking in’, running, and hiding are key to recognize complex
misbehavior. In addition, one should also consider technical factors and trade-offs
like data availability, discriminativeness, and classifier accuracy of the selected action
primitives. Therefore, optimally defining this set of primitive actions is a complex
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Figure 6.2: Deterministic and probabilistic inference models for the compositional
action “driving and talking on the phone or to someone, repeatedly, just after getting
in the car” described by the expression “agc � ({ad, atc} | {ad, ats})?”. The deter-
ministic model is a DFA and the probabilistic model is a PA, compiled for the given

regular expression.

problem by itself which is beyond the scope of this chapter, but it is a very compelling
direction for future work.

6.2.2 Deterministic Inference Model

Regular expressions have been studied for many years in the field of theoretical
computer science [Lawson, 2003] and formal language theory [Mitkov, 2003]. In the
natural language processing context, a regular expression is used to concisely specify
a pattern of characters for matching and searching in large texts [Sedgewick and
Wayne, 2011]. Inspired by these ideas, we first propose a deterministic model based
on Deterministic Finite Automaton (DFA) [McCulloch and Pitts, 1943; Rabin and
Scott, 1959] to the problem of recognizing activities described by regular expressions
of action primitives.

Let us start by defining a DFA Mr for a regular expression r as a 5-tuple
(
Q, Σ, δ,

q0,F
)
, consisting of a finite set of states Q, a finite set of input symbols called the

alphabet Σ, a transition function δ : Q× Σ → Q, an initial state q0 ∈ Q and a set of
accept states F ⊆ Q. In our problem, the alphabet Σ is the power-set of action prim-
itives P(A) and any subset w ∈ P(A) can define a transition in δ. Note that all these
structures are constructed from a given regular expression r and can be efficiently
obtained and optimized with traditional algorithms such as non-deterministic finite
automaton (NFA) construction [Ilie and Yu, 2002], the NFA to DFA subset construc-
tion algorithm [Rabin and Scott, 1959], and Hopcroft’s DFA minimization algorithm
[Hopcroft, 1971]. Figure 6.2 shows an example of an action pattern and its compiled
DFA.

Additionally, let us denote the probability of a primitive action a ∈ A happening
in frame x as p(a|x) which can be obtained from the output of a probabilistic classi-
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fier. Then, we say that the deterministic model accepts an input video v = 〈x1, . . . , xn〉
if and only if there exists a sequence of states 〈q0, . . . , qn〉 in Q such that (i) it starts
in the initial state q0, (ii) subsequent states qi is defined as qi+1 = δ (qi, w (xi+1))
for i = 0, . . . , n − 1, and (iii) it finishes in a final state qn ∈ F . Here, the symbol
w(x) = {a ∈ A | p(a|x) ≥ τ} for the frame x is obtained by thresholding the primi-
tive actions predictions p(a|x) with the model’s hyper-parameter τ which should be
set by cross-validation.

This procedure defines a binary function that assigns a value of one to videos
that reach the final state of the compiled DFA Mr and zero otherwise. This is a very
strict classification rule since a positive match using non-perfect classifiers is very
improbable. In order to relax such a classification rule, we propose implementing
the score function

fr(v) =
dist(q0, q̂)

dist(q0, q̂) + minq f∈F dist
(
q̂, q f

) (6.1)

where q̂ is the state in which the compiled DFA Mr halted when simulating the
sequence of frames defined by the video v, and the function dist(qx, qy) computes the
minimum number of transitions to be taken to reach the state qy from state qx. That
is, for a given regular expression, the deterministic model scores a video according
to the fraction of transitions taken before halting in the shortest path to a final state
in the compiled DFA.

In summary, the proposed deterministic model implements the function fr by
computing Equation 6.1 after simulating the DFA Mr compiled for the regular ex-
pression r on the sequence of symbols generated by thresholding the action primi-
tive classifiers p(a|x) on every frame x of the input video v. Note that this model has
considerable limitations since it requires the primitive classifiers to produce correct
predictions for all primitives in every frame of the input video.

6.2.3 Probabilistic Inference Model

Probabilistic models are generally preferable for pattern recognition problems be-
cause they are able to break the problem down into two separate stages: the inference
stage where we estimate posterior probabilities, and the subsequent decision stage
where we use these posterior probabilities to make optimal decisions which are often
influenced by the application requirements. In order to develop a proper probabilis-
tic model for our problem, we propose to use Probabilistic Automatons (PA) [Rabin,
1963] instead of a DFAs as the backbone of our framework.

Mathematically, let us define a probabilistic automaton Ur for a regular expression
r as a 5-tuple (Q, Σ, T, ρ,F ) where Q, Σ, and F are defined as before, while T (·) is
a function from the alphabet Σ into the states’ transition distributions and ρ is the
initial distribution over states. More specifically, ρ ∈ R|Q| is a stochastic vector and
ρi is the probability that the automaton starts at state qi. Likewise, T(w) ∈ R|Q|×|Q|

is a row stochastic matrix associated with the symbol w and the entry Ti,j(w) is the
probability that the automaton transit from the state qi to the state qj after reading
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the symbol w ∈ Σ.

Note that all these structures can be estimated from the transition function δ,
initial state q0, and final states F of the compiled DFA Mr for the same regular
expression r as follows,

Ti,j(w) =
[[δ(i, w) = j]] + α

∑
k∈Q

[[δ(i, w) = k]] + α|Q|
,

ρi =
[[q0 = i]] + α

∑
k∈Q

[[q0 = k]] + α|Q|
,

(6.2)

where the indicator function [[c]] evaluates to one when the condition c is true and
zero otherwise. The smoothing factor α is model hyper-parameter that regularizes
our model by providing non-zero probability for every distribution in our model. In
addition, unlike a DFA which fails to match when there is no transition for a given
state and input symbol, the PA needs to explicitly model the reject state by adding
transitions to it whenever an unexpected symbol appears with high-probability in a
given state. Figure 6.2 shows an example of a regular expression and its PA.

However, PAs do not model uncertainty in the input sequence which is a require-
ment of our problem, since we do not know what actions are depicted in a frame
during inference. Therefore, we propose to extend the PA framework by introduc-
ing a distribution over the alphabet Σ given a video frame. In order to make use of
off-the-shelf action classifiers like modern deep leaning models, we assume indepen-
dence between the action primitives and estimate the probability of a symbol given
a frame p(w|x) as

p(w|x) =
(

∏
a∈A

p(a|x)[[a∈w]] (1− p(a|x))(1−[[a∈w]])
)γ

, (6.3)

where p(a|x) is the prediction of a primitive action classifier as before and γ is a
hyper-parameter that compensates for violations to the independence assumption.
After such a correction, we need to re-normalize the p(w|x) probabilities in order to
form a distribution.

Finally, we can compute the normalized matching probability as the probability
of reaching a final state after seeing an input video v = 〈x1, . . . xn〉 as

PUr (v) =

(
ρᵀ
|v|

∏
i=1

∑
w∈Σ

T(w)p(w | xi)

) 1
|v|

f , (6.4)

where f is an indicator vector such that f i = 1 if and only if qi ∈ F and 0 otherwise.
The normalization by |v| calibrates the probabilities to allow comparisons between
videos of different length. It is also important to note that naively computing such a
probability is problematic since it requires marginalization over every symbol in our
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large alphabet Σ, which is the power-set of action primitives P (A). For instance,
a modestly sized set of 100 primitive actions would generate an alphabet of 2100

symbols. In order to circumvent such a limitation, we factorize the marginalization
over the alphabet in Equation 6.4 as

∑
w∈Σ

T(w)p(w | xi) = ∑
w∈Σ′

T(w)p(w | xi) + T̂

(
1− ∑

w∈Σ′
p(w | xi)

)
, (6.5)

where we first define a typically small subset of symbols Σ′ ⊆ Σ composed of sym-
bols that have at least one transition in the compiled DFA Mr and make use of the
fact that the other symbols will have exactly the same transition distribution matrix
T̂ and the sum of their probability is equal to (1−∑w∈Σ′ p(w | xi)). Therefore, the
matching probability can be efficiently computed without enumerating all symbols
in the alphabet.

In summary, our goal is to compute the match probability between a input video
v = 〈x1, . . . xn〉 and action pattern r, where the video is defined by a sequence of
frames x and the action pattern by the regular expression operators O and the set
of action primitives A. We also assume the existence of probabilistic classifiers for
these primitive actions {p(a|x)|a ∈ A}, e.g., a neural network trained to classify these
primitive actions in a video frame. In order to meet our goal, we first compile the ac-
tion pattern r to a DFA as described in Section 6.2.2 and transform the resulting DFA
to a PA using Equation 6.2. Such a step produces the 5-tuple Ur = (Q, Σ, T, ρ,F )
defining the PA Ur for action pattern r. Then, we estimate the symbol distribu-
tion p(w|x) for every frame x of the input video v using the primitive action classi-
fiers p(a|x) according to Equation 6.3. Finally, we compute the matching probability
PUr(v) between the action pattern r and the video v by applying Equation 6.4 factor-
ized as Equation 6.5 which are defined in terms of the elements in the 5-tuple Ur and
the just computed symbol distribution p(w|x). Intuitively, this formulation assigns
higher probabilities to videos that exhibit the primitive actions according to the given
action pattern and measured by the primitive action classifiers.

6.3 Experiments

We now evaluate the proposed inference models for rich compositional activity recog-
nition. We first perform a detailed analysis of the proposed approaches on controlled
experiments using synthetic data. Then, we test the utility of our methods on chal-
lenging action recognition tasks using well-known datasets.

6.3.1 Analysis with Synthetic Data

It is unrealistic to collect video data for the immense number of possible regular
expressions that our models may encounter. As such, we resort to the use of synthet-
ically generated data inspired by the well known Moving MNIST dataset [Srivastava
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Figure 6.3: The performance of the primitive classifiers on the test set with a different
number of digits per frame and under different noise levels. U(x) denotes uniform
additive noise between [−x, x] and the classifiers’ predictions are re-normalized us-

ing a softmax function.

et al., 2015a]. More specifically, we develop a parametrized data generation pro-
cedure to produce moving MNIST videos depicting different patterns of appearing
MNIST digits. Such a procedure can generate videos that match regular expressions
of the form

w+
1 � · · · �

((
w1

s
+ � · · · � w1

n
+
) ∣∣∣∣ · · · ∣∣∣∣ (wd

s
+ � · · · � wd

n
+
))

, (6.6)

where the symbols w ∈ P(A) are subsets of the primitives A which are the ten digit
classes. The data generation procedure has the following parameters: the number of
primitives that simultaneously appear in a frame |w|, the total number of different
sequential symbols n, the number of alternative sequences of symbols d, the start
position s of each alternative sequence in the pattern, and the total number of gener-
ated frames. Since complex patterns can match different sequences of symbols due
to the the alternation operator (|), we perform random walks from the start state
until reaching a final state in the compiled DFA in order to generate video samples
for a given regular expression.

Figure 6.4 shows in detail different types of expressions and the resulting video
clips generated by this data generation procedure. We start with a simple example in
the first row, where we have just one moving digit—starting as a six and transitioning
to a seven as the video progresses. In the action recognition context, this example
is analogous to two sequential actions such as “running followed by jumping”. In
the second row, we show a more complicated expression which has three digits per
frame (|w| = 3). This expression simulates concurrent primitives actions, i.e., actions
that happen simultaneously for a period of time. For instance, “talking on the phone
while holding a jacket”. Likewise, in the third row, we show an even more complex
pattern where we increase the number sequential symbols (n = 4). Now, we have
four sets of three concurrent actions. The fourth and fifth rows in Figure 6.4, show
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two ways that the ‘alternation’ (|) operator can be used to produce different types
of regular expressions. We form a union of two different patterns in the fourth row
(d = 2, s = 0), while we show a pattern with two alternative endings (d = 2, s = 2)
in the fifth row. In the action recognition context, the former is analogous to groups
of activities, while the latter can describe alternative ways that an activity can be
performed. Note also that we use different digit images when generating the videos,
we can generate an arbitrary number of frames for each expression, and we can
also generate videos that does not match with any given expression. The current
section presents a quantitative evaluation of the proposed inference models on these
increasingly complex regular expressions.

Using the synthetically generated data, we first train the primitive classifiers on
frames depicting a different number of digits obtained from the MNIST training
split. The primitive classifiers consist of a shallow CNN trained to minimize the
binary cross entropy loss for all digits in a vast number of frames. In order to evalu-
ate the robustness of the proposed models, we also generate worse versions of these
classifiers by adding noise to their predictions. Figure 6.3 shows the performance of
the learned primitive classifiers on different levels of noise and different numbers of
digits per frame. Note that more digits per frame implies more occlusion between
digits since the frame size is kept constant, which also decreases the classifier’s per-
formance.

Finally, using this synthetic data and the trained primitive classifiers, we test our
models for the inference of different regular expressions by setting all the data gen-
eration parameters to default values with the exception of the one being evaluated.
We use the following default values — |w| = 3 digits per frame, n = 3 different se-
quential symbols, d = 2 alternative sequences starting from s = 2, depicted on video
clips of 32 frames. In Figure 6.5, we plot standard classification/retrieval metrics,
e.g., Area Under the ROC Curve (AUC) and Mean Average Precision (MAP), against
different data generation parameters. More specifically, at each configuration, using
the MNIST test split, we generate 100 expressions with 20 positive samples, totaling
about 2000 video clips. In order to robustly report our results, we repeat the experi-
ment ten times reporting the mean and standard deviation of the evaluation metrics.
We also cross-validate the model hyper-parameters, τ for the deterministic model
and α and γ for the probabilistic model, in a validation set formed by expressions of
similar type as the ones to be tested, but with video clips generated from a held-out
set of digit images extracted from the training split of the MNIST dataset.

As can be seen, the probabilistic model performs consistently better than the de-
terministic model in all experiments, providing precise and robust predictions. In
most of the experiments, the probabilistic model presents performance about 40%
better than its deterministic counterpart on both metrics. Furthermore, the proba-
bilistic model is more robust to high levels of noise in the primitive classifiers’ pre-
dictions. While the deterministic model works as poorly as random guessing with
high noise levels, e.g., U(0.8), the probabilistic model still produces good results.

In addition, the probabilistic model works consistently across different kinds of
regular expressions. Its performance is almost invariant to most of the regular ex-
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Figure 6.4: Regular expressions and corresponding positive video clips synthetically
generated using the Moving MNIST dataset [Srivastava et al., 2015a]. The expres-
sions are parametrized according to Equation 6.6 and the parameters: the number of
primitives that simultaneously appear in a frame |w|, the total number of different
sequential symbols n, the number of alternative sequences of symbols d, and the start

position s of each alternative sequence in the pattern.
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pressions parameters evaluated, except the number of digits per frame |w| for which
some performance degradation is observed. Such a degradation correlates with the
decrease in performance presented by the primitive classifiers as the number of dig-
its per frames is increased (see Figure 6.3). The probabilistic model, however, is
able to mitigate such a degradation. For example, comparing the performance at
two and five digits per frame, we observe that a drop of about 16% in AUC on the
primitive classifiers performance causes a reduction smaller than 6% in AUC on the
probabilistic model performance.

6.3.2 Evaluation on Action Recognition Datasets

We now focus on evaluating the utility of our model for action recognition prob-
lems. We first describe the experimental setup, metrics and datasets used in our
experiments. Then we analyze how effectively our model can recognize activities
described by regular expressions in trimmed and untrimmed videos.

Experimental Setup. In order to evaluate the proposed inference models in the
action recognition context, we collect datasets of regular expressions and video clips
by mining the ground-truth annotation of multilabel action recognition datasets such
as Charades [Sigurdsson et al., 2016] and MultiTHUMOS [Yeung et al., 2017]. More
specifically, we search for regular expressions of the type defined in Equation 6.6
where the symbols w are subsets of the primitive actions annotated in the datasets.
For instance, Charades has 157 actions, while MultiTHUMOS has 65 actions. Given
the regular expressions parameters, we first form instances of regular expressions
using the primitive actions present in the datasets, keeping the ones that have at
least one positive video clip. Then, using these instances of regular expressions, we
search for all positive video clips in the dataset in order to form a new dataset of
regular expressions and video clips which will be used in our experiments.

Aiming at fair evaluation of the inference models proposed, we train the primitive
classifiers to independently recognize the primitive actions on the training split of the
selected datasets. We use the I3D model [Carreira and Zisserman, 2017], finetuned on
the Charades and MultiTHUMOS datasets, as our primitive action classifiers. In this
work, we only use the I3D-RGB stream, but optical flow and other information can
be easily added since our formulation depends only on the final predictions of the
primitive classifiers. Using the frame-level evaluation protocol (i.e., Charades local-
ization setting), this model reaches 16.12% and 24.93% in MAP on classifying frames
into primitive actions on the test split of Charades and MultiTHUMOS datasets re-
spectively. Once these classifiers are learned, we use them in the proposed models
to infer compositional activities mined from the action recognition datasets. We,
first, cross-validate the hyper-parameters of the proposed inference models using ex-
pressions and video clips mined from the training split, and then we evaluate the
models in a different set of expressions mined from the test split of the action recog-
nition datasets. It is important to emphasize that the expressions mined for testing
are completely different from the ones used for cross-validation. Therefore, the pro-
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posed models have not seen any test frame or the same action pattern before, which
provides an unbiased evaluation protocol. In order to provide robust estimators of
performance, in the experiments of the current section, we repeat the data collection
of 50 regular expressions and the test procedure steps ten times, reporting the mean
and standard deviation of the evaluation metrics AUC and MAP. Note that these
metrics are computed over the recognition of the whole complex activity as a singleton
label. They are not computed per primitive.

Comparison To Standard Action Recognition. Traditional action classification aims
to recognize a single action in a video, making no distinction if the action is per-
formed alone or in conjunction with other actions. Abusing the proposed regular
expression notation, for now consider the symbols w in Equation 6.6 as the collection
of all subsets of the primitive actions that contains the actions in w. For instance,

only here the symbol {a2, a3} represents the set of symbols
{
{a2, a3} , {a2, a3, a4} ,

. . . ,
{

a2, a3, a4, . . . , a|A|
}}

. Then, we can say that the traditional action classification
problem is the simplest instance of our formulation where the input regular expres-
sions are of the type {a}+, meaning one or more frames depicting the action a alone
or in conjunction with other actions. Therefore, starting from this simplified setup,
we analyze how our models behave as we increase the difficult of the problem by
dealing with more complex regular expressions. More specifically, we start from this
simplest form, where all the regular expression parameters are set to one, and evolve
to more complex expressions by varying some of the parameters separately. Fig-
ure 6.6 presents the results on the MultiTHUMOS and Charades datasets where we
vary the number of concurrent (columns 1 and 4), sequential (columns 2 and 5), and
alternated actions (columns 3 and 6) by varying the number of primitives per symbol
|w|, the number of sequential symbols n, and the number of alternative sequences d
in the mined regular expression and video clip data, respectively.

Note that there is a significant difference in performance when compared to the
results in Section 6.3.1. Such a difference is due to the quality of the primitive clas-
sifiers available for a challenging problem like action classification. For instance, the
digits classifiers for the MNIST dataset are at least three times more accurate than
the primitive action classifiers for Charades or MultiTHUMOS. However, different
from the deterministic model, the probabilistic model is able to extend the primi-
tive action classifiers, the I3D model, for complex expressions without degenerating
the performance significantly. For instance, considering all setups, the probabilis-
tic model presents a reduction in performance of at most 15% in both datasets and
metrics used. It is a very useful result which means that the proposed probabilistic
inference procedure can scale up the developments in traditional action classification
to compositional activity recognition without significant additional effort.

Draft Copy – 13 December 2019



§
6.

3
Experim

ents
101

2 4 6
Number of Digits per Frame (|w|)

0.5

0.6

0.7

0.8

0.9

1.0

Ar
ea

 U
nd

er
 th

e 
RO

C 
Cu

rv
e 

(A
UC

)

1 2 3 4 5 6
Number of Sequential Symbols (n)

0 25 50 75 100 125
Video Length Variation

1 2 3 4 5 6
Number of Alternative Sequences (d)

0 1 2 3 4
Start Position of Alternatives (s)

2 4 6
Number of Digits per Frame (|w|)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Av

er
ag

e 
Pr

ec
isi

on
 (M

AP
)

1 2 3 4 5 6
Number of Sequential Symbols (n)

0 25 50 75 100 125
Video Length Variation

1 2 3 4 5 6
Number of Alternative Sequences (d)

0 1 2 3 4
Start Position of Alternatives (s)

Prob. Prob. + U(0.4) Prob. + U(0.8) Det. Det. + U(0.4) Det. + U(0.8) Chance

Figure 6.5: Plots of the performance, in terms of AUC and MAP, of the proposed methods on the generated synthetic dataset using
primitive classifiers with different levels of noise as shown in Figure 6.3. The generated data consists of video clips depicting
regular expressions parametrized according to Equation 6.6. We evaluate the proposed approaches according to the following
data parameters: the number of digits that simultaneously appear in a frame |w|, the total number of different sequential symbols
n, the variance in number of frames in the videos, the number of alternative sequences of symbols d, and the start position s of

each alternative sequence in the pattern respectively.
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Figure 6.6: Comparison with standard action classification. Plots of the performance, in terms of AUC and MAP, of the proposed
methods using the I3D model [Carreira and Zisserman, 2017] as the primitive action classifier. We evaluate the models on
collections of regular expressions of different complexity mined from the test videos of MultiTHUMOS and Charades datasets.
These regular expressions follows the format defined in Equation 6.6 where all the variables are set to 1 with the exception of
the one being evaluated. For instance, for the plot with variable number of sequential symbols (n) the expressions are of the
type (w+

1 ), . . . , (w+
1 � · · · � w+

4 ). Differently from the other experiments, the symbols here denote any subset that contains the
primitives.
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Table 6.1: Results for activity classification in trimmed videos on MultiTHUMOS and
Charades datasets.

MultiTHUMOS Charades
Method AUC MAP AUC MAP
Chance 50.00 (±0.0) 2.00 (±0.00) 50.00 (±0.0) 2.00 (±0.00)
Deterministic 52.46 (±0.77) 3.66 (±0.48) 51.85 (±0.83) 4.40 (±1.15)
Probabilistic 73.84 (±2.63) 13.76 (±1.93) 74.73 (±2.35) 15.19 (±1.09)

Trimmed Compositional Activity Classification. In this experiment, we evaluate
the ability of the proposed algorithms to recognize very specific activities in trimmed
video clips which depict only the entire activities from the beginning to the end.
Different from the previous experiment, but like the other experiments, the input
regular expressions are formed by symbols that are only subsets of primitives. For
instance, the symbol {a2, a3} means that the primitive actions a2, a3 ∈ A happen
exclusively in a frame. In addition, we mined test sets for regular expressions with
different combinations of parameters ranging jointly from 1 to 6. Table 6.1 presents
the results.

We would like to emphasize the difficulty of the problem where the chance per-
formance is only about 2% MAP in both datasets. The deterministic model works
only slightly better than chance, which is also a consequence of the imperfect quality
of the primitive classifiers due to the difficult of action recognition as discussed be-
fore. On the other hand, the probabilistic model provides gains above 20% in AUC
and 10% in MAP compared to the deterministic approach in both datasets. This
shows the capability of the probabilistic formulation to surpass the primitive classi-
fiers’ imprecision even when the activity of interest is very specific, producing a very
complex regular expression.

Untrimmed Compositional Activity Classification. In this task, we evaluate the
capability of the proposed models for recognizing specific activities in untrimmed
videos which may depict the entire activity of interest at any part of the video. Here,
videos can contain more than one activity, and typically large time periods are not
related to any activity of interest. In this context, we modify the mined regular
expressions to allow matches starting at any position in the input video. It is easily
accomplished by doing the following transformation: re → .?re.? where (.) is the
“wildcard” in standard regular expression engines and in our formulation consists in
every subset of primitive actions. In addition, we do not trim the video clips, instead,
we compute matches between the mined regular expressions and the whole video
aiming to find at least an occurrence of the pattern in the entire video. We present
the results on Table 6.2 where we compute matches between regular expressions and
the videos that have at least one positive video clip for the set of mined regular
expressions.

In the same fashion as the previous experiments, the probabilistic model per-
forms significantly better than the deterministic model. More specifically, the perfor-
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Table 6.2: Results for activity classification in untrimmed videos on MultiTHUMOS
and Charades datasets.

MultiTHUMOS Charades
Method AUC MAP AUC MAP
Chance 50.00(±0.0) 4.21(±0.20) 50.00(±0.0) 2.58(±0.01)
Deterministic 65.69(±1.34) 12.59(±1.32) 55.76(±1.21) 6.77(±1.20)
Probabilistic 75.96(±1.49) 26.03(±1.45) 75.43(±1.35) 17.90(±1.25)

mance of the probabilistic model is at least 10% better than the deterministic model
in this experiment on both metrics and datasets. Therefore, the proposed probabilis-
tic model is able to analyze entire videos and generate their global classification as
accurately as it does with trimmed video clips.

6.3.3 Qualitative Evaluation

While Section 6.3.2 presents a quantitative evaluative of the proposed inference mod-
els, the current section presents a qualitative evaluation by visualizing the inference
results of some interesting regular expressions. More specifically, we show exam-
ples of regular expressions and video clips that match with high probability by our
proposed probabilistic model. Figures 6.7 and 6.8 show examples from the Multi-
THUMOS [Yeung et al., 2017] dataset, while Figures 6.9 and 6.10 show examples
from the Charades [Sigurdsson et al., 2016] dataset. We also discuss the characteris-
tics of the expressions used for evaluation and failure cases of our model which are
highlighted by a red frame in these figures.

As explained in Section 6.3.2, the expressions used in the action recognition ex-
periments are mined with the intent of evaluating our model’s prediction accuracy on
compositional activities with concurrent, sequential and alternative primitive actions.
The mined expressions follow the format defined by Equation 6.6, where concurrent,
sequential and alternative actions are determined by the number of primitives per
symbol |w|, number of sequential symbols n and number of alternative sequences
d parameters, respectively. These expressions can be as simple as the expression in
the first row in Figure 6.7 where we have (|w| = 1, n = 3, d = 1), or as complex
as the expression presented in the first row in Figure 6.10 where we have two alter-
native sub-expressions that has two and three sequential patterns of three or four
concurrent actions. We evaluate the proposed inference models quantitatively on
these mined regular expressions of different complexities in Section 6.3.2.
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Figure 6.7: Examples of regular expressions and video clips mined from the MultiTHUMOS [Yeung et al., 2017] dataset and
matched by the proposed probabilistic model. The primitive actions used to form these expressions are running (Run), jumping
(Jump), falling (Fall), body rolling (Body-Roll), body bending (Body Bend), basketball dribbling (BaDr), and basketball dunking

(BaDu). The video clips with red border are false positives. Best seen in color and zoomed in.
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Figure 6.8: Examples of regular expressions and video clips mined from the MultiTHUMOS [Yeung et al., 2017] dataset and
matched by the proposed probabilistic model. The primitive actions used to form these expressions are standing (Stand), throw-
ing (Throw), golf swinging (Golf-Swing), clapping hands (Clap-Hands), body contraction (Body-Contract), squatting (Squat),
sitting (Sit) , clean and jerk (Clean-And-Jerk), picking up (Pick-Up), and standing up (Stand-Up). The video clips with red border

are false positives. Best seen in color and zoomed in.
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Figure 6.9: Examples of regular expressions and video clips mined from the Charades [Sigurdsson et al., 2016] dataset and
matched by the proposed probabilistic model. The primitive actions used to form these regular expressions are walking through
a doorway (WaThDo), opening a door (OpDo), closing a door (ClDo), taking some clothes from somewhere (TaSoClFrSo), putting
clothes in somewhere (PuClSo), opening a cabinet (OpCa), putting something on a shelf (PuSoOnSh), and closing a cabinet (ClCa).

The video clips with red border are false positives. Best seen in color and zoomed in.
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Figure 6.10: Examples of regular expressions and video clips mined from the Charades [Sigurdsson et al., 2016] dataset and
matched by the proposed probabilistic model. The primitive actions used to form these regular expressions are walking through
a doorway (WaThDo), opening a door (OpDo), closing a door (ClDo), drinking from a glass (DrFrGl), sitting in a chair (SiInCh),
someone going from standing to sitting (SoGoFrStToSi), holding a glass (HoGl), holding a broom (HoBr), tidying up with a broom
(TyUpWiBr), tidying something on the floor (TySoOnFl), someone is sneezing (SoSn), grasping on the doorknob (GrOnDoKn),

and holding a bag (HoBa). The video clips with red border are false positives. Best seen in color and zoomed in.

D
raft

C
opy

–
13

D
ecem

ber
2019
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There are many challenges in recognizing compositional activities described by
these regular expressions in videos. Some expressions can be very complex and
small differences in the videos can produce different results. See the first row in
Figure 6.8, the difference between the positive video and the negative video is only
a few frames where one man throws a ball to another man who is about to perform
a “Golf Swing”. See also the third row in Figure 6.8, the given expression requires
matching the action “Sit” which is performed by a person that is in the background
of the scene. In the same fashion, videos can depict complex scenes where multiple
activities are performed independently making the problem harder. For instance, in
the basketball game depicted in the third row of Figure 6.7, some activities different
to the one of interest are happening, like “Basketball Guard”. There are also edited
videos with multiple takes of different parts of the scene as in the second video in
the second row in Figure 6.8, where two athletes are preparing to perform a “javelin
throw” and supporters are “clapping hands”.

Moreover, it is well known that action recognition datasets contain inconsistencies
in their ground-truth annotations, which increases the difficulty of evaluating our
proposed rich compositional activity recognition task. For instance, frames are not
consistently annotated throughout the datasets, since there is no consensus about
when a certain action starts or ends between the annotators. In order to illustrate
this fact, consider the second row in Figure 6.9, both video clips are correct for the
given expression according to the ground-truth, but they differ substantially since
the actor collects the clothes and then puts them somewhere else in the first video,
while the actor performs both actions simultaneously in the second video. Likewise,
the primitive action “walking through a doorway” for some videos starts before the
actor reaches the door (like in the first row in Figure 6.9), while for other videos
it starts as soon as he opens the door. Similar observation can be done for other
primitive actions.

Despite the aforementioned challenges, the proposed probabilistic model is able
to accurately infer compositional activities in videos. We can see examples of ex-
pressions with sequential actions, concurrent actions, and mixing these two types of
temporal relation between primitive actions. As an example of sequential actions, we
point to the second row in Figure 6.7 where an athlete is performing a jump followed
by body roll and body bend in a diving competition. Another example is the third
row in Figure 6.9 where someone is opening a cabinet, putting something on a shelf
and closing the cabinet. As an example of concurrent actions, we refer to the third
row in Figure 6.10 where someone is walking through a doorway while holding a
glass. For expressions with both concurrent and sequential actions, we point to either
the first row in Figure 6.8 where someone performs a golf-swing just after receiving
a ball thrown by someone else or the first row in Figure 6.9 where someone opens
and closes a door to perform a “walking trough a doorway” action. We also show
an example of groups of activities in the first row of Figure 6.10 where someone is
either sitting in a chair while holding a glass and drinking from a glass or someone
that is tidying up with a broom and suddenly sneezes.

In addition to the challenges already discussed, the inaccuracy of the primitive
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classifiers is one of the main causes of errors produced by our model. We observed
that the primitive action classifiers rely greatly on the context of the scene such as the
background and objects present. As such, they tend to produce wrong predictions
when different primitive actions are performed in the same context. For instance
consider the false positive example shown in the third row in Figure 6.8, the second
video has nothing related to the corresponding expression but the context depicted,
e.g., gym room with a lot weights and boxes, is similar to ground-truth video clips
like the first video. Similar observations can be done about the second and third
rows in Figure 6.10. Such an issue is a compelling direction for future works.

6.4 Chapter Summary

While Chapter 3 proposes a learning framework to learn image rankers leverag-
ing the structure in the visual output space, Chapter 4 extends such a framework
providing a self-supervised approach to learn transferable features for object recog-
nition tasks such as object classification, detection and segmentation. These chapters
together describe an effective way to pretrain deep learning models in order to mit-
igate the need for large scale human annotated datasets in the target applications.
Following the same goal of reducing the human supervision in visual recognition
systems, Chapter 5 presents an approach to scale-up recognition systems beyond the
number of annotated visual concepts providing a recognition systems able to recog-
nize visual concepts without a single training samples by leveraging the composi-
tionality of visual primitives. Similarly, the current chapter provides an approach to
scale-up action recognition systems by leveraging existing action classifiers allowing
to precisely represent and recognize complex activities in videos.

More specifically, this chapter addresses the problem of recognizing complex
compositional activities in videos. Towards this end, we proposed to describe activi-
ties unambiguously as regular expressions of simple primitive actions and developed
deterministic and probabilistic frameworks to recognize instances of these regular
expressions in videos. Through a variety of controlled experiments using synthetic
data, we showed that our probabilistic framework excels in this task even when us-
ing noisy primitive classifies. In the action recognition context, the proposed model
was able to extend state-of-the-art action classifiers to vastly more complex activities
without additional data annotation effort or large performance degradation.

Going forward, one compelling direction of investigation is to incorporate cor-
relations, co-occurrences, and contextual information between primitive actions into
the proposed inference framework. The main idea is to learn these factors from data
aiming to eliminate semantically inconsistent predictions of the primitive classifiers,
e.g., it is not possible having someone running and sleeping at the same time.
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Chapter 7

Conclusion and Future Directions

“We can only see a short distance ahead, but we
can see plenty there that needs to be done.”

Alan Turing, 1950

This thesis focuses on reducing the exhaustive and expensive human supervision
required by the current state-of-the-art models for visual recognition. We also aim
to tackle visual recognition in a more realistic scenario where the visual concepts are
not defined a priori and we can not annotate large volumes of data for them. We
accomplish these goals by exploring the structure, priors and regularities existent in
the visual world. This final chapter summarizes the contributions of this thesis and
discuss some open problems and challenges for future research.

7.1 Summary

In this dissertation, we acknowledge the advances in visual recognition accomplished
by current deep learning models. However, we argue that the dependence of these
fully supervised approaches on large scale human annotated datasets is the main
obstacle to the goal of developing visual recognition systems as capable as the human
visual system. As explained in Chapter 1, it is unrealistic to produce a dataset at the
scale and richness of the visual world and even if it was possible, such an approach
would be problematic due to artificial bias, inconsistencies and ambiguities in the
curated data and learning process itself. Therefore, we propose methods that reduce
the need for extensive human supervision by leveraging the structure in the visual
world. We call this approach visual recognition from structured supervision and
explore the inherent structure existent in the outputs, inputs, and models for visual
recognition.

In order to contextualize our research with the scientific literature and provide
the background necessary to understand this dissertation, we provide a background
chapter in Chapter 2 before discuss the technical chapters (Chapters 3 – 6). More
specifically, such a chapter defines a visual recognition problem, explains the cur-
rent data-driven approach, and present state-of-the-art models for the applications
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relevant for this thesis. In addition, it provides a concise literature review on exist-
ing works that also attempt to reduce the exhaustive human supervision in visual
recognition models. In order to facilitate the presentation of our contributions, the
technical chapters also contain sections with related work and background informa-
tion that are only relevant to the chapter in discussion.

Once our research is contrasted against existing works in the literature review and
background information presented, we start our technical development in Chapter 3.
In this chapter, we propose the visual permutation learning framework as a generic
formulation to learn structural concepts in ordered image sequences. Towards this
end, we first formulate such a problem as the prediction of the permutation matrix
that recovers the structure of the data from shuffled samples of it. Then, we lever-
age the geometry of permutation matrices and its continuous surrogates to prune
unfeasible solutions for our learning and inference algorithms in order to accurately
and efficiently solve such a problem. The proposed model can be efficiently learned
via backpropagation and stochastic gradient descent in an end-to-end manner. In
our experiments, we evaluate our proposed framework on different image ranking
application (e.g., relative attributes and supervised learning-to-rank) outperforming
existing works by a considerable margin using the same amount of annotated data.

In the same way the outputs of visual recognition systems are structured, the
visual inputs like images and videos depict visual priors and regularities that are
useful to solve computer vision tasks. In Chapter 4, we propose to use the spatial
structure intrinsically existent in unlabelled images to learn image representations
without human supervision. More specifically, we first define an auxiliary task re-
sembling image jigsaw puzzles. Then, motivated by the effectiveness of the proposed
visual permutation learning framework on image ranking applications, we hypothe-
size that such a model trained to solve this task also leans object features transferable
for object recognition tasks. We validate this hypothesis on transfer learning ex-
periments where we outperform baselines and contemporary self-supervised image
representation learning algorithms in object recognition tasks such as object classi-
fication, detection and segmentation. It is important to highlight that this approach
allows us to train large deep learning models on small datasets by performing a
simple pretraining on a unlabelled image collection which are very easy to obtain.

While we present an effective way to alleviate the need for human supervision
when training large scale machine learning models for visual recognition in Chapters
3 and 4, we introduce an strategy to scale-up recognition systems beyond a fixed and
considerably small number visual concepts in Chapter 5. Towards this end, we lever-
age the structure in the model space to develop neural network modules that can
synthesize classifiers for complex visual concepts described by boolean expressions
of visual primitives even if we do not have a single training sample for such complex
concepts. We name this framework as neural algebra of classifiers and simplifies its
components using the well-known De Morgan’s laws. In our experiments, the neural
algebra of classifiers framework is more accurate than the baselines when compos-
ing classifiers for expressions of animals attributes on two well-known datasets and
different classification metrics. It is important to note that this chapter presents an ef-
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fective way to scale-up recognition systems to complex and dynamic scenarios where
the concepts to be recognized can not be defined a priori or enumerated.

Another important contribution of this dissertation is how to use existing models
to perform more expressive tasks without requiring additional human annotated
data. In this context, we propose to recognize complex activities in videos from
the prediction of simple action classifiers in Chapter 6. We first describe complex
activities as regular expressions of simple primitive actions named action patterns,
then we derive a probabilistic framework to efficiently recognize these action patterns
in videos. The proposed approach allows us to unambiguously distinguish between
fine-grained actions, retrieve very specific activity instances and recognize complex
composite of actions that may not have a single training sample. Our experiments
show that the proposed model is able to extend state-of-the-art action classifiers to
vastly more complex activities without additional data annotation effort or large
performance degradation.

In summary, the methods proposed in this thesis provide more accurate, extensi-
ble, and interpretable vision models using much less human supervision than black-
box fully supervised deep learning approaches. We also tackle visual recognition
in a more realistic scenario where the visual concepts are not defined a priori and
we can not annotate large volumes of data for them. Therefore, this thesis presents
a more feasible direction towards the development of visual recognition algorithms
with the capabilities of the human visual system.

7.2 Open Problems and Future Directions

Our work has made progress towards the long-term goal of visual recognition by
proposing methods to reduce the need for extensive human supervision and tackling
more expressive and complex recognition problems. However, as suggested by the
quote at the beginning of this chapter, there are still many questions left unanswered
and plenty more work to be done. This section discusses some of the limitations of
the proposed methods and suggests a number of possible directions for building on
our work.

7.2.1 Visual Permutation Learning Beyond Static Images

In Chapter 3, we describe the visual permutation learning as a generic formulation to
learn structural concepts in ordered image sequences and validate the utility of such
a framework on image ranking applications. In Chapter 4, we extend this pool of
applications by learning image representation without human supervision for object
recognition tasks following a self-supervised approach. Note that these applications
basically explore structural information within images, neglecting the richness of
structural information and visual priors existent in video data which can also been
seen as time ordered sequences of images. Therefore, one compelling direction is to
evaluate the proposed visual permutation learning framework on tasks using video
data.
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Along these lines, our ideas described in Chapter 4 can be extended to action
representation learning. Specifically, we propose to learn representations for actions
from unlabeled collections of videos by exploiting the temporal coherence naturally
present on video frames. In video domain, we can describe an action as a collection
of salient movements coherently distributed in time and space. Then, we can create
a pretext task where the objective is to recover an action sequence given its temporal
artificially shuffled version. As before, we can train the proposed visual permuta-
tion learning framework on this task hypothesizing it should learn what are actions,
what are their sub-actions and how those sub-actions happen through time in order
to solve such a task. Finally, this knowledge can also be transferred to larger and
more complex deep learning based models for action recognition tasks like activity
classification and action detection. Note that this application is more appealing than
the unsupervised learning of image representation described in Chapter 4, since la-
belling video data is much more difficult and time consuming than curating labelled
image datasets.

Furthermore, the visual permutation learning framework seems intuitively a very
effective way to capture and exploit the temporal coherence depicted in video frames.
Such a structural information is very valuable in different applications and the pro-
posed framework can be used with other models in subsequent research to tackle
these problems. For instance, video summarization consists of distilling a raw video
into a compact form without losing its main semantic information. Most of the tech-
niques developed for this task focus on retaining the most important parts of the
video neglecting the transitions between these parts. The proposed visual permuta-
tion learning framework can be extended to smooth these transitions providing video
summaries more visually pleasant. In the same fashion, the problem of synthesizing
new video frames in an existing video, either in-between existing frames (interpola-
tion) or subsequent to them (extrapolation), can benefit from the temporal coherence
leaned by the visual permutation learning framework. Specifically, in order to obtain
realistic views, we need to be aware of the temporal coherence which can be captured
by the visual permutation learning framework when permuting shuffled sequences
of video frames. Therefore, we expect that by building on our visual permutation
learning framework, many different applications using video data can have better
solutions.

7.2.2 Compositional Models Beyond Classification

In the context of visual recognition, we can think of classification as a recognition
task where we are only interested in identifying semantic concepts that are depicted
in a given visual data. For instance, object classification consists of identifying which
objects appears in an image, while action classification aims to identify which actions
are happening in a video clip. According to these definitions, Chapter 5 proposes
a compositional model for synthesize visual concept classifiers and evaluates this
model on image classification tasks, whereas Chapter 6 proposes a compositional
inference procedure and evaluates this procedure on activity classification tasks using

Draft Copy – 13 December 2019



§7.2 Open Problems and Future Directions 115

trimmed and untrimmed video clips. We argue that these proposed compositional
models can be extended to even more challenging recognition tasks like detection and
segmentation which the objective is to predict labels for image regions and pixels,
respectively.

In the context of object recognition, there are recognition models in the literature
that can be extended to become compositional models inheriting all advantages over
traditional models explained in Chapter 5. More specifically, the Fast R-CNN and
the Mask R-CNN models proposed respectively by Girshick [2015] and He et al.
[2017] can be made compositional by replacing the layers responsible for the final
predictions with the neural algebra of classifiers schema. This approach would allow
us to detect and segment complex objects based on boolean expression of simple
primitives like visual attributes.

Likewise, we can propose compositional models for activity detection by com-
bining the inference procedure proposed in Chapter 6 and existing models for action
proposals like [Yu and Yuan, 2015] and Escorcia et al. [2016]. However, the proposed
inference procedure allows a more elegant solution to the problem of temporally
localizing activity instances in videos. The accepting probability described in Equa-
tion 6.4 has a very particular behaviour of peaking when the target activity has hap-
pened in a video. This can be used as termination signal and the beginning of the
activity can be computed by finding a peak when matching the video and the regular
expression in the opposite direction (i.e., from the end to the beginning). Therefore,
activities instances can be localized in time by analysing such a probability measure
using adaptive thresholds.

7.2.3 Modelling Action Correlation, Cooccurrence, and Contextuality

In Chapter 6, we propose a probabilistic inference framework to recognize complex
activities described by regular expressions of primitive actions in videos. During the
derivation of the proposed inference procedure, we assume independence between
primitive actions when defining the distribution over subsets of actions that may hap-
pen in a given frame as described in Equation 6.3. While such an assumption simpli-
fies our model and allows us to leverage off-the-shelf accurate action classifiers like
modern deep learning models (e.g., C3D [Tran et al., 2015] and I3D [Carreira and
Zisserman, 2017]), it does not hold in the real-world since actions present correla-
tions according to their meaning, context and similarity. For instance, “driving” and
“walking” are antagonistic, “watching tv” and “eating a snack” often happens jointly,
and “brushing teeth” is more likely to happen after someone “wake up” than “going
to sleep”. Therefore, we intend to explore these regularities in order to provide a
more accurate model for activity recognition.

A very promising direction towards this goal is to use a Determinantal Point Pro-
cess (DPP) [Macchi, 1975; Kulesza et al., 2012] to define a distribution over subsets
of actions that may happen in a given frame. This probabilistic model is mathemati-
cally elegant, computationally efficient, and can capture high-order dependencies be-
tween primitive actions. Furthermore, DPPs are closed under conditioning [Kulesza
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et al., 2012] allowing us to condition the probability of a subset of actions occurring
in the current frame on the subset of actions occurred in the previous frame. An-
other promising direction is to extend the neural algebra of classifiers formulation
described in Chapter 5 to the problem of activity recognition. More specifically, we
can represent the primitive actions in a vector space, define neural network modules
for every regular expression operator, and parse the input regular expression to a
sequence of computations of these modules. Despite to be a more complex model,
this formulation allows us to go beyond the Markov model provided by the DPP for-
mulation. Therefore, as a future work, we propose to investigate these approaches
aiming to provide a more accurate model for activity recognition.

7.3 Conclusion

This thesis has explored the challenge of visual recognition using minimal human
supervision. Towards this end, we have leverage the structure existent in visual
inputs, outputs, and models to propose methods to reduce the exhaustive human
supervision required by the state-of-the-art models for visual recognition. We also
have proposed novel solutions to learn unsupervised image representations for object
recognition, to synthesize classifiers for visual concepts without annotated data, and
to extend action classifiers for activity recognition. However, as discussed in the
previous section, there is still much work to be done on improving these methods
and exciting directions in which they can be extended. We hope that our work can
provide the direction on which further research can stand and free researchers to
explore problems for which massive labeled datasets do not exist.
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