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Motivation
Consider the following tasks:
• To order a set of images according to a given attribute.
• Given shuffled image patches, can we recover the original image? 
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Motivation
• These tasks essentially involve learning how to recover 

the order, i.e., infer the shuffling permutation.

• Tasks in different fields can be reduced to this problem:
• Computer graphics: Jigsaw puzzle
• Biology: DNA and RNA modeling
• Archeology: Re-assembling relics
• Computer Vision: Image Ranking and Self-supervised 

representation learning.

• We propose a generic formulation to learn structural 
concepts in image sequences by predicting the shuffling 
permutation.
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Visual Permutation Learning - Task

We hypothesize that the model trained to solve such task is 
able to capture high-level semantic concepts, structure and 
shared patterns in visual data.
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Visual Permutation Learning - Learning

• Let us define a training set,

• We propose to learn a function that maps from fixed 
length image sequence to permutation matrices. Then 
our permutation learning problem can be described as,
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Geometry of Permutation Matrices
• Permutation Matrices form discrete 

points in the Euclidean space which 
imposes difficulties for gradient based 
optimization solvers.

• According to the Birkhoff-von Neumann 
theorem, the Birkhoff polytope (which is 
the set of l × l doubly-stochastic 
matrices), forms a convex hull for the 
set of l × l permutation matrices.

Then, we propose to approximate inference over permutation matrices 
to inference over their nearest convex-surrogate, the doubly stochastic 
matrices.



www.roboticvision.or
gwww.roboticvision.orgwww.rfsantacruz.com

DeepPermNet - Model
• We also wish to learn the image representation that 

captures the structure behind our sequences.

• Incorporating the DSM structure in our predictors can 
avoid the optimizer from searching over imposible 
solutions.
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Sinkhorn Layer
• Sinkhorn's theorem: Any non-negative square matrix 

can be converted to a DSM by alternating between 
rescaling its rows and columns to one.

• Function:

• Gradient (Row normalization):
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Bi-level Optimization

Note that this problem can be reformulated as a bi-level 
optimization problem,

• We refer to “On differentiating parameterized argmin and argmax problems 
with application to bi-level optimization” by Gould et al. for a detailed 
explanation about computing gradients of argmin functions.

https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/1607.05447
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Visual Permutation Learning - Inference
Finally, we can recover the correctly ordered sequence 
from a permuted sequence by,

• Solving a approximation problem (or argmax 
rows/cols)

• Permuting the shuffled image sequence by the 
inverse permutation
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Visual Permutation Learning - Recap

• Given a set of ordered images Sc according to c, we build a data set D 
as,

• Using D, we learn a function (CNN) which maps shuffled image 
sequences to its DSM matrix employing the sinkhorn layer or bi-level 
optimization.

• During test time, we receive a shuffled image sequence and reorder it 
according to c by doing,
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Experiments - Permutation Prediction

Unpermute 20K shuffled sequences:
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Experiments - Relative Attributes



www.roboticvision.or
gwww.roboticvision.orgwww.rfsantacruz.com



www.roboticvision.or
gwww.roboticvision.orgwww.rfsantacruz.com

Experiments - Learning to rank 

Permutation prediction + Sorting Algorithm
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Experiments - Self-Supervised Learning
• The main idea is to exploit supervisory signals, intrinsically in the data, 

to guide the learning process.
• In practice, we define a supervised proxy task, where labels are 

obtained with almost zero cost, to train the model before finetune for the 
target task.

[Doersch et al., ICCV 2015]

[Zhang et al., ECCV16]
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Experiments - Self-Supervised Learning
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Conclusion

• We tackle the problem of learning visual concepts from 
image sequences and introduce a formulation based on 
permutation matrix prediction.

• We propose novel CNN layers which explores the 
structure of permutation matrices.

• We show applications on relative attributes, 
learning-to-rank and Self-supervised representation 
learning.
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