CorticalFlow: A Diffeomorphic Mesh Deformation Module for Cortical Surface Reconstruction

⁴ University Of Queensland (UQ), Australia. ^{*}Equal contribution.

Leo Lebrat^{1,2,*}, Rodrigo Santa Cruz^{1,2,*}, Frédéric de Gournay³, Darren Fu⁴, Pierrick Bourgeat¹, Jurgen Fripp¹, Clinton Fookes², and Olivier Salvado¹ ¹The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. ² Queensland University of Technology (QUT)., Australia. ³ Toulouse Mathematics Institute (IMT), France.

We propose a new geometric deep-learning model that, given a 3-dimensional image, deforms a template mesh with desired properties like topology, connectedness, and resolution to smoothly approximate the geometry of the depicted object while keeping these mesh properties intact.

1) Cortical Surface Reconstruction from MRI (CSR):

$$V_{k+1}^i = V_k^i + hv(V_k^i), ext{with} \ h = rac{1}{N}$$

2) **CorticalFlow** Model and Training Procedure:

