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Abstract. Cortical thickness (CTh) is an important biomarker com-
monly used in clinical studies for a range of neurodegenerative and
neurological conditions. In such studies, CTh estimation software pack-
ages are employed to estimate CTh from TI1-weighted (T1-w) brain
MRI scans. Since commonly used software packages (e.g. FreeSurfer) are
time-consuming, the fast-inference Machine Learning (ML) CTh esti-
mation solutions have gained much popularity. Recently, several ML
regression-based solutions offering morphological properties (CTh, vol-
ume and curvature) estimation have emerged but typically achieved lower
accuracy compared to mainstream alternatives. One of the reasons for
such performance of the ML-based CTh estimation models is the inac-
curate automatic labels typically used for their training. In this paper,
we investigate the impact of automatic labels selection on the perfor-
mance of the current state-of-the-art ML regression-based CTh estima-
tion method - HerstonNet. We train two models on pairs of brain MRIs
and FreeSurfer/DL+DiReCT automatic CTh measurements to investi-
gate the benefits of using DL+DiReCT instead of, the more frequently
used, FreeSurfer CTh measurements on the learning capability of a mod-
ified version of HerstonNet. Then, we evaluate the performance of the
two trained models on three test sets with scans coming from four pub-
licly available datasets. We show that HerstonNet trained on DL+DiReCT
labels overall achieves a 13.3% higher Intraclass Correlation Coefficient
(ICC) on a test set composed of ADNI and AIBL scans, 19.4% on OASIS-
3 and 17.1% on SIMON dataset compared to the same model trained on
FreeSurfer derived measurements. The results suggest that DL+DiReCT
provides automatic labels more suitable for CTh estimation model train-
ing than FreeSurfer.
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1 Introduction

Cortical thickness (CTh) is an important biomarker for the diagnosis and prog-
nosis of neurodegenerative diseases, such as Alzheimer’s disease (AD) [14]. Esti-
mating and tracking CTh changes in a living brain may reveal insights into
disease trajectory, quantitatively evaluate treatment effects, and enable correla-
tions between brain regions and age, cognitive deterioration, genotype, or med-
ication [1]. Despite the importance of CTh as a biomarker, a generally accepted
gold standard for in-vivo CTh measurements currently does not exist [15]. An
accepted gold standard does not exist as there is no standardised definition
of CTh estimates and even if there was one, post-mortem histology measure-
ments are unreliable [15]. In-vivo CTh measurements can only be estimated
from human brain scans acquired using neuroimaging techniques such as mag-
netic resonance imaging (MRI) [9]. Manual CTh estimation from MRI scans is
laborious, subjective and requires a high level of expertise which makes it infea-
sible in practice [7]. Therefore robust software tools such as FreeSurfer [6] are
typically utilised for automatic CTh estimation from brain MRIs [21]. However,
such tools are also time-consuming (FreeSurfer - up to 10h per scan) since their
CTh estimation relies on throughputs such as segmentation maps, partial volume
maps, and triangular meshes that need to be constructed before estimation takes
place [20]. Therefore, such tools are not adequate for clinical applications requir-
ing timely results [20]. Recently, a couple of studies approached the problem of
time-consuming automatic CTh, volume and curvature estimations by propos-
ing Deep Learning (DL)-based solutions that reduce estimation time from hours
to seconds at the expense of estimation accuracy [18,20]. Currently, DL-based
methods [18,20] are trained and tested against FreeSurfer measurements that
are considered to be the best approximation of the gold-standard ground truth,
so called silver-standard. By doing so, these DL-based methods learn FreeSurfer-
specific CTh definition bias as well as FreeSurfer software-specific biases com-
ing from the method design and its implementation. While biases cannot be
completely avoided due to a non-existing true bias-free gold-standard CTh mea-
surements, the choice of CTh measurement for training may impact DL-model
learning capabilities.

In this paper, we investigate the impact of the choice of automatic labels
(CTh measurements) on the training of the state-of-the-art DL-based CTh esti-
mation method - HerstonNet [20]. Firstly, we modify the original HerstonNet
solution to decouple CTh from the other morphological estimations (volume
and curvature). Then we train the decoupled HerstonNet solution on CTh mea-
surements derived by FreeSurfer and DL+DiReCT [17] to ensure different CTh
definition and method biases. Finally, we evaluate the trained models on three
subsets of brain MRIs from four datasets ADNI, AIBL, OASIS and SIMON. The
contributions of this paper are the following: i) insights into the impact of bias
labels (CTh estimations) choice on the training of HerstonNet and ii) compari-
son in performance (intraclass correlation and test-retest) between HerstonNet
trained with FreeSurfer (silver standard) and DL+DiReCT-derived CTh estima-
tions on three datasets.
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2 Methods

Data & Pre-processing. In this work, we used T1-weighted (T1-w) brain MRI
scans from four datasets: Alzheimer’s Disease Neuroimaging Initiative (ADNI)!
[11,23] Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing
(AIBL) [19], Open Access Series of Imaging Studies (OASIS) [13] and Single
Individual volunteer for Multiple Observations across Networks (SIMON) [5].
The models under test were trained, validated and tested on a subset composed
of 9310 MRIs from both ADNI and AIBL datasets. The subset was split into
training, validation and test sets, roughly in the 60:15:25 ratio, respectively,
with no overlap between subsets to avoid data leakage. Further insights into the
subset, data split, demographics and pathologies are detailed in Table1. The
MRIs taken from ADNI and AIBL datasets were pre-processed by correcting
the bias field in the brain region of interest (ROI) [22]. Further, 9310 bias-field
corrected MRIs from ADNI and AIBL datasets, together with 2720 MRIs from
OASIS-3 and 96 MRIs from SIMON datasets, were rigidly registered to MNI-
space (181 x 217 x 181 voxels) and z-score intensity normalised with the mean
value computed in the brain ROI. The MRIs from the OASIS-3 and SIMON
datasets were used for testing only.

Automatic Cortical Thickness Measurements. In this work, we
employed two CTh estimation tools, FreeSurfer cross-sectional pipeline [8] and
DL+DiReCT [17]. FreeSurfer cross-sectional pipeline relies on the construction of
white matter (WM) and grey matter (GM) surfaces to map morphometric mea-

Table 1. Insights into the train, validation and test subsets of ADNI and AIBL
datasets, data split, demographics and pathology across subsets. S annotates the num-
ber of subjects while N stands for the number of data points. The column Other
comprises subjects/data points with under-represented or unavailable pathology.

Healthy Control (HC) Mild Cognitive Impairment (MCI) | Alzheimer’s Disease (AD) Other

S N S N S N S N
Train 441 1127 996 1972 537 922 1013 1611
Validation | 113 284 243 487 157 268 242 352
Test 190 482 391 736 252 420 421 649
Overall 744 1893 1630 3195 946 1610 1676 2612

Mean Age (£ STD) | % Female | Mean Age (& STD) | % Female Mean Age (£ STD) | % Female | Mean Age (+ STD) | % Female
Train 74.79 £ 6.42 55.01 73.98 £ 6.90 58.87 76.30 £ 5.72 69.20 72.74 £ 7.25 49.65
Validation | 74.02 £ 7.35 72.18 74.03 £ 6.16 56.88 76.74 £ 6.23 71.27 73.27 &£ 7.55 44.68
Test, 73.58 £ 6.37 49.38 73.85 £ 6.23 59.24 76.16 £ 6.27 77.62 72.65 & 7.22 43.33
Overall 74.37 £ 6.57 56.15 73.96 + 6.64 58.65 76.34 = 5.95 71.74 72.80 £ 7.28 47.31

! Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early AD. For
up-to-date information, see www.adni-info.org [11,23].
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surements on the reconstructed surface. Once WM and GM surfaces are recon-
structed, FreeSurfer estimates CTh as an average minimum distance between
vertices on GM and WM surfaces and vice versa. DL4+DiReCT estimates CTh
by segmenting neuroanatomy using a DL-based model called DeepSCAN [16]
followed by diffeomorphic registration-based CTh (DiReCT) [3] measurements.
DeepSCAN segments T1-w brain MRIs into GM and WM segmentation as well
as parcellation, while DiReCT obtains CTh from MRIs and corresponding seg-
mentations. DiReCT defines CTh as a distance measure between corresponding
cerebrospinal fluid (CSF)/GM and GM/WM interfaces, where continuous one-
to-one mapping is ensured by diffeomorphic registration [3,17].

HerstonNet, Modifications and Training. In this section, we focus on Her-
stonNet [20], the state-of-the-art regression-based neural network for efficient
brain morphometry analysis, and modifications we made to decouple the CTh
estimation from the rest of the morphometry measurements. HerstonNet is a
3D ResNet-based neural network that learns rich features directly from MRI.
Throughout the multi-scale regression scheme, HerstonNet predicts morphome-
tric measures from feature maps of various resolutions, which robustly leverages
the network optimisation to avoid poor quality minima and lower the predic-
tion variance. Santa Cruz et al. trained HerstonNet on pairs of images, and
FreeSurfer derived CTh, volume and curvature. Further, the authors employed
a data-augmentation strategy by applying Gaussian noise injection, translations
(up to 15 voxels), and rotations (up to 30°) on input brain MRIs. After 170
epochs of training, they apply Stochastic Weight Averaging (SWA) optimisation
technique [10] to improve the generalisation of the model. In our experiments,
we follow the architecture, training strategy, and data splits as described in [20]
with a couple of major modifications. Instead of predicting the CTh, volume,
and curvature, we modify the output size and restrict predictions to CTh only.
Further, we skip the SWA step to emphasise the model generalisability differ-
ence between models trained on different automatic CTh measurements. We
trained the modified version of HerstonNet according to [20] with the difference
in the number of epochs. Instead of training modified HerstonNet models for
170 epochs, we stopped training after 140h (142 epochs) when both models’
losses plateaued. Both models were optimised by minimising the mean squared
error (MSE) on batches of six samples by employing the Adam optimiser with a
learning rate 10~4. We also followed the augmentation strategy detailed in [20].

3 Experiments and Results

Visualisation of CTh Measurement Difference. To better understand the
difference between FreeSurfer and DL+DiReCT measurements, we mapped the
region-wise mean absolute difference and standard deviation (STD) to the brain
template meshes (Fig.1). We considered 34 ROIs per hemisphere defined by
the Desikan-Killiany atlas [4]. The mean absolute difference and the STD (in
mm) were computed on the training set that comprises 5582 MRI scans from
ADNI and AIBL datasets. According to Fig. 1, in the parietal lobe, we measured
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The absolute difference in cortical thickness between FreeSurfer and DL+DiReCT (mm)
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Fig. 1. The absolute CTh difference between FreeSurfer and DL+DiReCT computed
on 5582 scans randomly selected from ADNI and AIBL datasets.

Mean

a mean absolute difference around 0.25 mm, while in the frontal and occipital
lobes we measured minimal difference between the CTh estimations. In the tem-
poral lobe, the methods predominantly differ in inferior temporal gyrus, banks
of the superior temporal sulcus, fusiform gyrus, entorhinal cortex and temporal
pole, where the difference in CTh estimations reaches 0.5 mm. Overall, the dif-
ferences between the estimated CTh are mainly symmetric on both hemispheres.
Given that the average CTh spans across regions in the [2.5 to 3] mm interval
[9], the difference of up to 0.5 mm between the CTh estimation methods is sig-
nificant. We confirmed the significance of CTh estimations difference in all 34
brain ROI on both hemispheres by performing a t-test followed by Bonferroni
correction. In the context of model training, validation and testing, such a sig-
nificant difference between FreeSurfer and DL+DiReCT CTh estimations imply
that models should not be trained with FreeSurfer while being validated and
tested with DL4+DiReCT CTh estimations, and vice versa.

FreeSurfer-Trained vs. DL+DiReCT-Trained HerstonNet Model Esti-
mations. To evaluate the impact of labels (CTh measurements) derived by
FreeSurfer and DL4+DiReCT on model learning and performance, we train two
modified HerstonNet models, FreeSurfer-trained and DL+DiReCT-trained Her-
stonNet. FreeSurfer-trained HerstonNet was trained on pairs of brain MRIs and
corresponding FreeSurfer CTh estimations, while the DL+DiReCT-trained Her-
stonNet was trained on pairs of brain MRIs and corresponding DL+4DiReCT
CTh estimations. Both models were trained on the same train set compris-
ing 5582 MRIs from ADNI and AIBL datasets. Each training sample is rep-
resented with an MRI and corresponding CTh estimations of 68 regions (34
regions/hemisphere). Once trained, we tested both models on three different test
sets, composed of ADNI4+AIBL, OASIS and SIMON MRIs. For model perfor-
mance evaluation, we used the intraclass correlation coefficient (ICC) as well as
a 95% confidence interval. Based on the research reliability guidelines for ICC
values reporting [12], we computed the two-way mixed effects, absolute agree-
ment, and single rater (ICC(2,1)) between the predicted and either FreeSurfer
CTh estimations as ground-truth in the case of FreeSurfer-trained HerstonNet
and DL+DiReCT CTh estimations as ground-truth in the case of DL+DiReCT-
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trained HerstonNet model. The negative ICC values indicate a negative correla-
tion, the ICC value of zero indicates no correlation, while the ICC value of one
indicates the perfect correlation between predicted and ground truth values. The
overall ICC scores on test sets are presented in Table 2. The DL+DiReCT-trained
HerstonNet achieved a higher ICC score than the FreeSurfer-trained HerstonNet
model on all three datasets. The best performing model (DL+DiReCT-trained
HerstonNet) achieved the highest ICC score on the dataset composed of ADNI and
AIBL scans. Such an observation is intuitive since the model was trained on MRI
scans that belong to either ADNT or AIBL datasets. Nevertheless, DL+DiReCT-
trained HerstonNet also achieved a higher ICC score on the other two datasets
(OASIS-3 and SIMON), which were not involved in the training. Since both mod-
els were not exposed to any images from the OASIS-3 and SIMON datasets, the fact
that DL4+DiReCT-trained HerstonNet performed better than FreeSurfer-trained
HerstonNet is a strong indication of higher generalisability. Overall, DL+DiReCT-
trained HerstonNet achieved 13.3% higher ICC score than FreeSurfer-trained Her-
stonNet on the dataset composed of ADNI and AIBL MRIs, 19.4% higher ICC on
the OASIS-3 dataset and 17.1% on SIMON dataset.

Table 2. The mean ICC value and standard deviation, computed over all 34 regions
on both hemispheres, achieved by both modified HerstonNet models trained on pairs
of MRI and either FreeSurfer or DL4+DiReCT CTh estimates on three datasets:
ADNI+AIBL, OASIS, and SIMON. The difference in achieved is expressed in %. The
sign T denotes that the higher metric values suggest better results.

Test set Number of MRI scans | Intraclass Correlation Coefficient (ICC) 1 Difference (%)
HerstonNet (FreeSurfer) | HerstonNet (DL+DiReCT)

ADNI + AIBL | 2282 0.767 £ 0.093 0.9 +0.047 13.3%

OASIS-3 2720 0.227 £ 0.125 0.421 +0.194 19.4%

SIMON 96 0.122 £0.12 0.293 +0.15 17.1%

We also compared the region-wise achieved ICC scores and 95% confidence inter-
vals of FreeSurfer-trained and DL+DiReCT-trained HerstonNet models. Based
on the discussion provided in [2] and following [18,20], we utilise the ICC inter-
vals, commonly used in clinical applications. The ICC intervals are visualised at
the bottom of Fig. 2. The comparison of ICC scores and 95% confidence intervals
achieved by FreeSurfer-trained and DL+DiReCT-trained HerstonNet are visu-
alised in Fig. 2. According to Fig.2, DL+DiReCT-trained HerstonNet achieves
higher ICC than FreeSurfer-trained HerstonNet in all 34 brain regions on both
hemispheres. The mean ICC values achieved by DL+DiReCT-trained Herston-
Net in all 34 brain regions on both hemispheres fall into the ICC > 0.75 (excel-
lent) ICC interval, while ICC values achieved by FreeSurfer-trained HerstonNet
mainly fall into 0.6 > ICC < 0.75 (good) ICC interval. Further, DL+DiReCT-
trained HerstonNet overall achieved tighter 95% confidence intervals than the
FreeSurfer-trained HerstonNet model. There are six brain regions on both
hemispheres where FreeSurfer-trained HerstonNet achieved tighter 95% confi-
dence intervals than DL+DiReCT-trained HerstonNet. The six brain regions
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Fig. 2. ICC scores with 95% confidence intervals, computed on 2282 MRIs coming from
ADNI and AIBL datasets, for FreeSurfer-trained and DL+DiReCT-trained HerstonNet
CTh estimations in 34 cortical regions per hemisphere.
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Reproducibility Error (OASIS-3)
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Fig. 3. Test-retest - colour coded reproducibility error (%) computed on subset OASIS-
3 and mapped on a template mesh.

where DL+DiReCT-trained HerstonNet achieves wider confidence interval than
FreeSurfer-trained HerstonNet on the left hemisphere are the entorhinal cortex,
pars opercularis, paracentral lobe, the inferior temporal, middle temporal and
superior temporal gyrus. The six brain regions where DL+DiReCT-trained Her-
stonNet achieves wider confidence interval than FreeSurfer-trained HerstonNet
on the right hemisphere are the entorhinal cortex, lateral occipital cortex, pars
triangularis, fusiform, lingual and postcentral gyrus.

Reproducibility Evaluation (Test-Retest). To evaluate the robustness of
FreeSurfer-trained and DL+DiReCT-trained HerstonNet models, we computed
the region-wise reproducibility error (e), formally defined as follows:

100 it — Hi 1 &
€= <n Z‘ L )7/1@:;27”75,15 (1)
i—1 i vi=1

where N stands for the number of scanning sessions of the same subject, n;
denotes the number of scans obtained in a session 4, while m;,; denotes the
measurement computed by the algorithm from the ¢! scan in the session i. For
the computation of € we used 592 subjects from OASIS-3 dataset, with a total
number of 1536 scans acquired in 757 sessions. Once computed, we mapped
€ per region on a template mesh (Fig.3). According to Fig.3, DL+DiReCT-
trained HerstonNet achieved slightly lower or equal ¢ than FreeSurfer-trained
HerstonNet in all regions except temporal pol on both hemispheres. While the
difference in € across 34 brain regions and both hemispheres is not significant,
such an outcome suggests higher reliability of DL+DiReCT-trained HerstonNet
over FreeSurfer-trained HerstonNet.

4 Conclusion

In this paper, we investigated the benefits of using two different automatic CTh
estimations for the training of HerstonNet - the state-of-the-art DL-based model
for direct CTh estimation from brain MRIs. The obtained results indicate that
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training HerstonNet on DL+DiReCT CTh estimations makes the model more
generalisable and robust when compared with HerstonNet trained on FreeSurfer
CTh. However, more experiments are needed to evaluate whether such a con-
clusion is generalisable to other automatic CTh estimations, DL-based models
and datasets. For future work, we plan to thoroughly investigate the impact of
several automatic CTh estimations on the training of DL models as well as the
main drivers behind the learning acceleration.
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