
CorticalFlow++: Boosting Cortical Surface
Reconstruction Accuracy, Regularity, and

Interoperability

Rodrigo Santa Cruz† 1,2[0000−0002−5273−7296], Léo Lebrat† 1,2, Darren Fu3,
Pierrick Bourgeat1, Jurgen Fripp1, Clinton Fookes2, and Olivier Salvado1,2

1 CSIRO
2 Queensland University of Technology
3 University of Queensland, Australia.

Abstract. The problem of Cortical Surface Reconstruction from mag-
netic resonance imaging has been traditionally addressed using lengthy
pipelines of image processing techniques like FreeSurfer, CAT, or CIVET.
These frameworks require very long runtimes deemed unfeasible for real-
time applications and unpractical for large-scale studies. Recently, super-
vised deep learning approaches have been introduced to speed up this
task cutting down the reconstruction time from hours to seconds. Using
the state-of-the-art CorticalFlow model as a blueprint, this paper pro-
poses three modifications to improve its accuracy and interoperability
with existing surface analysis tools, while not sacrificing its fast infer-
ence time and low GPU memory consumption. First, we employ a more
accurate ODE solver to reduce the diffeomorphic mapping approxima-
tion error. Second, we devise a routine to produce smoother template
meshes avoiding mesh artifacts caused by sharp edges in CorticalFlow’s
convex-hull based template. Last, we recast pial surface prediction as
the deformation of the predicted white surface leading to a one-to-one
mapping between white and pial surface vertices. This mapping is essen-
tial to many existing surface analysis tools for cortical morphometry. We
name the resulting method CorticalFlow++. Using large-scale datasets,
we demonstrate the proposed changes provide more geometric accuracy
and surface regularity while keeping the reconstruction time and GPU
memory requirements almost unchanged.

Keywords: Cortical Surface Reconstruction · CorticalFlow · 3D Deep Learning.

1 Introduction

The problem of cortical surface reconstruction (CSR) consists of estimating
triangular meshes for the inner and outer cortical surfaces from a magnetic res-

† Equal contribution
Our code is made available at:
https://bitbucket.csiro.au/projects/CRCPMAX/repos/corticalflow/browse

ar
X

iv
:2

20
6.

06
59

8v
1 

 [
ee

ss
.I

V
] 

 1
4 

Ju
n 

20
22

https://bitbucket.csiro.au/projects/CRCPMAX/repos/corticalflow/browse


2 R. Santa Cruz et al.

onance image (MRI). It is a pivotal problem in Neuroimaging and a fundamen-
tal task in clinical studies of neurodegenerative diseases [4] and psychological
disorders [21]. Traditionally, this problem is tackled by extensive pipelines of
handcrafted image processing algorithms [6,25,13,18] which are subject to care-
ful hyperparameter tuning (e.g., thresholds, iteration numbers, and convergence
criterion) and very long runtimes.

To overcome these issues, deep learning (DL) based approaches have been
proposed recently [23,9,17,15]. These methods can directly predict cortical sur-
faces geometrically close to those produced by traditional methods while reduc-
ing their processing time from hours to seconds. More specifically, the current
state-of-the-art DL model for CSR, named CorticalFlow [15], consists of a se-
quence of diffeomorphic deformation modules that learn to deform a template
mesh towards the target cortical surface from an input MRI. This method takes
only a few seconds to produce cortical surfaces with sub-voxel accuracy.

In this paper, we propose three modifications to improve the accuracy of
CorticalFlow and its interoperability to other surface processing tools with-
out increasing its reconstruction time and GPU memory consumption. First,
we upgrade the Euler method used by CorticalFlow to solve the flow ODE re-
sponsible for computing the diffeomorphic mapping to the fourth-order Runge-
Kutta method [20]. This tool provides more accurate ODE solutions leading the
model to better approximate the target surfaces and reducing the number of
self-intersecting faces on the reconstructed meshes. Second, instead of using the
convex hull of the training surfaces as a template, we propose a simple routine to
generate smooth templates that tightly wrap the training surfaces. This new tem-
plate eases the approximation problem leading to more accurate surfaces while
suppressing mesh artifacts in highly curved regions. Finally, inspired by Ma et
al. [17], we leverage the estimated white surfaces as the initial mesh template
for learning and predicting the pial surfaces. This approach provides a better
“starting point” to the approximation problem as well as a one-to-one mapping
between white and pial surface vertices which facilitates the use of the generated
surfaces in existing surface-based analysis tools [24,8]. In acknowledgment of the
CorticalFlow framework, we name our resulting method CorticalFlow++.

Using a large dataset of MRI images and pseudo-ground-truth surfaces, we
compare CorticalFlow and CorticalFlow++ performance in the reconstruction
of cortical surfaces from MRI on three perspectives: geometric accuracy, mesh
regularity, and time and space complexity for the surface reconstruction. We
conclude that the proposed CorticalFlow++ improves upon CorticalFlow, on
average, by 19.11% in terms of Chamfer distance and 56.77% in terms of the
percentage of self-intersecting faces. Additionally, it adds only half a second
to the final surface reconstruction time while keeping the same GPU memory
budget.



CorticalFlow++ 3

2 Related Work

Traditional cortical surface reconstruction frameworks like FreeSurfer[6], Brain-
Suite [25], and CIVET [18] involve two major steps usually accomplished by
lengthy sequences of image processing techniques. They first voxel-wise segment
the input MRI, then fit surfaces enclosing the gray matter tissue delimiting the
brain cortex. More specifically, the widely used FreeSurfer V6 framework for
cortical surface analysis from MRI uses an atlas-based segmentation [7] and a
deformable model [3] for surface fitting on these segmented volumes. Recently,
Henschel et al. [9] accelerated this framework with a modern DL brain segmenta-
tion model and a fast spectral mesh processing algorithm for spherical mapping,
cutting down FreeSurfer’s processing time to one hour.

In contrast, supervised deep learning approaches leverage large datasets of
MRIs and pseudo-ground-truth produced with traditional methods to train high-
capacity neural networks to predict surfaces directly from the MRI. DeepCSR [23]
trains an implicit surface predictor and CorticalFlow [15] learns a diffeomorphic
deformable model. Similarly, PialNN [17] also learns a deformable model but
focuses only on pial surface reconstruction, receiving as input the white matter
surface generated with traditional methods.

Building upon the success and the powerful framework of CorticalFlow, this
paper proposes to address its main limitations, aiming to improve its accuracy
and interoperability with existent surface analysis tools, but without severely
degrading its inference time and GPU memory consumption.

3 Method

In this Section, we present the proposed method CorticalFlow++. We start by
reviewing the original CorticalFlow framework and its main components, then
we introduce our proposed changes.

3.1 CorticalFlow Framework

Originally proposed by Lebrat et al. [15], CorticalFlow consists of a chain of
deformation blocks that receives as input a 3-dimensional MRI I ∈ RH×W×D
and deforms an initial template mesh T producing the desired cortical surface
mesh. As shown in Figure 1a, a CorticalFlow’s deformation block comprises a
U-Net [22] and a Diffeomorphic Mesh Deformation module (DMD) [15]. The
U-Net in the i-th deformation block, denoted as UNetiθi and parametrized by
θi, outputs a stationary flow field Ui ∈ RH×W×D×3, while it receives as input
the channel-wise concatenation of the input MRI and all the previous blocks’ U-
Nets outputs {U1, . . . ,Ui−1}. The predicted flow field encodes how the template
mesh should be deformed to approximate the target cortical surface. The DMD
module receives as input the block’s UNet predicted flow field Ui and computes
a diffeomorphic mapping Φ : [0, 1]×R3 → R3 for each vertex position x ∈ R3 in



4 R. Santa Cruz et al.

Flow Field 

(a) (b) (c) (d)

Fig. 1: (a) CorticalFlow’s Deformation block. (b) Convex-hull based Corti-
calFlow’s mesh template. (c) CorticalFlow++’s proposed template. (d) Examples
of mesh artifacts caused by sharp edges in CorticalFlow’s template.

the resulting mesh computed by the previous deformation block. Formally, the
DMD module solves the flow ODE,

dΦ(s;x)
ds

= U (Φ(s;x)) , with Φ(0;x) = x, (1)

using the forward Euler method [5]. This flow ODE formulation preserves the
topology of the initial template mesh without producing self-intersecting faces.
Hence, CorticalFlow with k deformations (CFk) can be written using the follow-
ing recurrence,

CF1
θ1(I, T ) = DMD(UNet1θ1(I), T ))

CFi+1
θi+1

(I, T ) = DMD(UNeti+1
θi+1

(U_
1 · · ·U_

i I),CFiθi(I, T )) for i ≥ 1, (2)

with A_B denoting the channel-wise concatenation of the tensors A and B. As
in [15], we focus on CorticalFlow with three deformation blocks (CF3).

In order to train CF3, the authors propose a multi-stage approach where
the deformation blocks are trained successively keeping previous blocks’ weights
frozen and using template meshes of increasing resolution Ti. Mathematically,
at each stage i, they optimize the following objective,

argmin
θi

∑
(I,S)∈D

L
(
CFiθi(I, Ti), S), (3)

where D is a dataset composed of pairs of MRIs and their respective triangle
meshes S representing some cortical surface. L(·, ·) is the training loss composed
of mesh edge loss [27] and Chamfer Distance loss [27]. Note that for each cortical
surface and brain hemisphere, a separate CorticalFlow is trained independently.

3.2 Higher Order ODE Solver

DMD modules in CorticalFlow solve the flow ODE (1) using the forward Euler
method which consists of an iterative method defined by the following integration
step:

Φ̂(h,x) = x+ hU(x), (4)



CorticalFlow++ 5

where h is the algorithm step-size and U(x) is the linear interpolation of a
predicted flow field U at mesh vertex position x. Φ̂ is a numerical approximation
of the true diffeomorphic mapping Φ due to the interpolation and discretization
errors inherent to this application.

Since the Euler method only provides an approximation of the continuous
problem with an error that decreases linearly as h decreases, it may require a
large number of integration steps to approximate accurately the continuous so-
lution. Otherwise, the resulting mapping may cease to be invertible. For these
reasons, we propose to use the Runge-Kutta [20] explicit fourth-order approxi-
mation method also known as RK4. The integration step of this method consists
of the weighted average of four slopes estimated at the beginning, two different
midpoints, and end of the step size interval. For our stationary vector field, the
RK4 integration step is defined as,

Φ̂(h,x) = x+
1

6
[k1 + 2k2 + 2k3 + k4] , (5)

where k1 = U (x), k2 = U
(
x+ hk12

)
, k3 = U

(
x+ hk22

)
, and k4 = U (x+ hk3)

are the averaged slopes.

3.3 Smooth Templates

CorticalFlow’s template mesh consists of the convex-hull of all cortical surface
meshes in the training set. This approach has two main shortcomings:

1. Even target surfaces with small differences between them can lead to a “loose”
template. Consequently, the model has to learn “large” deformations making
the smooth approximation problem harder. For pial surfaces, this problem is
even worse because some template regions may lay outside the image bounds
where the predicted flow field is undefined.

2. The convex-hull is defined by a set of intersecting planes which leads to
sharp edges as shown in Figure 1b. These edges are very hard to be unfolded
by a smooth deformable model like CorticalFlow, because it requires non-
smooth deformations with drastic local changes of direction in its flow field
representation. Hence, these edges may remain in the predicted mesh as
undesirable artifacts (see Figure 1d).

To overcome these issues, we develop genus zero smooth mesh templates that
tightly wrap all training meshes. We first compute a signed distance map for ev-
ery target surface mesh in the training set by computing the largest 3D bounding
box that contains these meshes, create 5123 voxel-grids into this bounding box,
and populate these voxel-grids with the signed distance to each target mesh.
These signed distance maps are implicit representations of the target meshes
where voxels with positives values are outside of the mesh and voxels with neg-
ative values are inside of the mesh. Then, by thresholding the binary union of
these maps and running the standard marching cubes algorithm [16], we obtain a
template mesh that is very tight around all training surfaces. However, this tem-
plate mesh looks “blocky” with many small sharp edges and undesired topological



6 R. Santa Cruz et al.

defects. The template mesh is thus smoothed using the Laplacian smoothing al-
gorithm [10,26] and re-meshed with Delaunay triangulation [1]. The result is a
smooth template mesh with spherical topology tightly wrapping all training set
surfaces (see Figure 1c). Finally, we apply a topology preserving mesh subdi-
vision algorithm [2] to generate template meshes at different resolutions which
are required to train CorticalFlow. Implementations of the used algorithms are
available in the Libigl [12] and MeshLab [2] toolboxes.

3.4 White To Pial Surface Morphing

In Lebrat et al. [15], a separate CorticalFlow model is trained for each cortical
surface (i.e., pial and white) and each brain hemisphere (i.e., left and right). This
approach leads to reconstructed surface meshes without a one-to-one mapping
between the vertices in the white and pial surfaces on the same brain hemisphere.
In the absence of this mapping, many existent surface analysis tools can not
process the generated surfaces. Additionally, as also observed in Ma et al. [17],
the pial surface may only differ from the white surface by a “small” deformation
thanks to the natural anatomical agreement between these surfaces. Therefore,
we propose to predict pial surfaces by learning to deform the predicted white
surfaces instead of using a pial surface template mesh.

Formally, the resulting model for pial surfaces with k deformation blocks
(CFPk) can be restated by the following recurrence,

CFP1
θ1(I, T

w) = DMD(UNet1θ1(I),CFW
k′(I, T w))

CFPi+1
θi+1

(I, T w) = DMD(UNeti+1
θi+1

(U_
1 · · ·U_

i I),CFPi(I, T w)) for i ≥ 1, (6)

where CFWk′ is a CorticalFlow model with k′ deformation blocks pretrained to
reconstruct the same hemisphere white surface as described in Section 3.1 and
T w is its respective template mesh for white surfaces generated as described
in Section 3.3. Note that the formulation of CFWk′ remains the one stated in
Equation 2 and we only use template meshes for the white surfaces since the
pial surfaces are obtained by deforming the predicted white surface.

4 Experiments

We now evaluate CorticalFlow++ in the cortical surface reconstruction prob-
lem. First, using the CSR benchmark introduced by Santa Cruz et al. [23], we
quantify the performance impact of each proposed modification separately. This
benchmark consists of 3,876 MRI images extracted from the Alzheimer’s Disease
Neuroimaging Initiative4 (ADNI)[11] and their respective pseudo-ground-truth
4 Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


CorticalFlow++ 7

Left Pial Surface Right Pial Surface
CH(mm) ↓ HD(mm) ↓ CHN ↑ % SIF ↓ CH(mm) ↓ HD(mm) ↓ CHN ↑ % SIF ↓

CorticalFlow
3.22 sec / 2.82 GB

0.681
(±0.098)

0.802
(±0.049)

0.932
(±0.006)

0.686
(±0.469)

0.693
(±0.091)

0.815
(±0.046)

0.929
(±0.006)

1.239
(±0.629)

CorticalFlow + RK4
3.55 sec / 2.82 GB

0.629
(±0.100)

0.761
(±0.042)

0.937
(±0.006)

0.502
(±0.196)

0.580
(±0.082)

0.751
(±0.038)

0.943
(±0.006)

0.280
(±0.133)

CorticalFlow + W2P
3.63 sec / 2.82 GB

0.545
(±0.082)

0.730
(±0.037)

0.943
(±0.006)

0.188
(±0.116)

0.540
(±0.075)

0.729
(±0.033)

0.945
(±0.006)

0.176
(±0.134)

PialNN†

white gen. + 0.880 secs / 1.92 GB
5.500

(±0.786)
2.793

(±0.220)
0.792

(±0.009)
4.730

(±0.841)
5.948

(±0.811)
2.898

(±0.212)
0.789

(±0.011)
4.537

(±0.815)
PialNN?

white gen. + 0.880 secs / 1.92 GB
1.388

(±0.223)
1.251

(±0.120)
0.864

(±0.011)
10.507

(±1.908)
1.374

(±0.217)
1.236

(±0.115)
0.863

(±0.011)
11.159

(±1.930)
CorticalFlow++

3.76 sec / 2.82 GB
0.529

(±0.088)
0.721

(±0.036)
0.946

(±0.006)
0.069

(±0.060)
0.528

(±0.074)
0.723

(±0.031)
0.946

(±0.005)
0.099

(±0.093)
Left White Surface Right White Surface

CH(mm) ↓ HD(mm) ↓ CHN ↑ % SIF ↓ CH(mm) ↓ HD(mm) ↓ CHN ↑ % SIF ↓
CorticalFlow

3.22 sec / 2.82 GB
0.608

(±0.098)
0.785

(±0.060)
0.941

(±0.007)
0.033

(±0.030)
0.599

(±0.093)
0.783

(±0.059)
0.942

(±0.007)
0.030

(±0.029)
CorticalFlow + RK4

3.55 sec / 2.82 GB
0.540

(±0.107)
0.733

(±0.055)
0.948

(±0.006)
0.042

(±0.039)
0.517

(±0.089)
0.716

(±0.044)
0.951

(±0.006)
0.010

(±0.023)
CorticalFlow + NEWTPL

3.04 sec / 2.82 GB
0.598

(±0.101)
0.780

(±0.062)
0.942

(±0.007)
0.030

(±0.027)
0.558

(±0.091)
0.747

(±0.053)
0.945

(±0.006)
0.104

(±0.079)
CorticalFlow++

3.35 sec / 2.82 GB
0.514

(±0.090)
0.712

(±0.044)
0.952

(±0.006)
0.017

(±0.023)
0.510

(±0.083)
0.711

(±0.040)
0.952

(±0.006)
0.031

(±0.040)

Table 1: Cortical Surface Reconstruction Benchmark [23]. ↓ indicates smaller
metric value is better, while ↑ indicates greater metric value is better.

surfaces generated with the FreeSurfer V6.0 cross-sectional pipeline. We strictly
follow the benchmark’s data splits and evaluation protocol. We refer the reader
to [23,15] for full details on this dataset. As evaluation metrics for measuring
geometric accuracy, we use Chamfer distance (CH), Hausdorff distance (HD),
and Chamfer normals (CHN). These distances are computed for point clouds
of 200k points uniformly sampled from the predicted and target surfaces. As
a measure of surface regularity, we compute the percentage of self-intersecting
faces (%SIF) using PyMeshLab [19]. Finally, we also report the average time (in
seconds) and the maximum GPU memory (in GB) required by the evaluated
methods to reconstruct a cortical surface. Table 1 presents these results.

We observe that the adoption of the RK4 ODE solver (CorticalFlow +
RK4) and the white to pial surface morphing formulation (CorticalFlow +
W2P) significantly improves the geometric accuracy and surface regularity of
the CorticalFlow baseline. For instance, we noticed an average decrease of 12.2%
and 21.02% in chamfer distance, respectively. Likewise, the percentage of self-
intersecting faces reduces on average by 35.90% and 79.19%, respectively. On the
other hand, the proposed new templates (CorticalFlow + NEWTPL) present a
modest improvement in those criteria, but greatly succeeds in suppressing mesh
artifacts as qualitatively shown in Figure 2. Additionally, none of these changes
incur a significant increase in reconstruction time or memory consumption due to
their GPU friendly nature. All together, these modifications in CorticalFlow++

establish a new state-of-the-art method for cortical surface reconstruction.
Since the white to pial morphing approach has been previously introduced

in [17], we compare CorticalFlow++ and PialNN [17] on the pial surface re-



8 R. Santa Cruz et al.

Fig. 2: Predicted cortical surfaces color-coded with the distance to the pseudo-
ground-truth surfaces. See our supplementary materials for more examples.

Left Pial Surface Right Pial Surface
CH(mm) ↓ HD(mm) ↓ CHN ↑ % SIF ↓ CH(mm) ↓ HD(mm) ↓ CHN ↑ % SIF ↓

CorticalFlow
3.22 sec / 2.82 GB

0.677
(±0.099)

0.803
(±0.056)

0.923
(±0.007)

0.594
(±0.319)

0.724
(±0.106)

0.845
(±0.063)

0.918
(±0.007)

1.467
(±0.519)

PialNN†

white gen. + 0.880 secs / 1.92 GB
5.426

(±0.486)
2.763

(±0.144)
0.781

(±0.009)
4.281

(±0.709)
5.944

(±0.503)
2.873

(±0.139)
0.777

(±0.009)
4.033

(±0.671)
PialNN?

white gen. + 0.880 secs / 1.92 GB
1.307

(±0.202)
1.243

(±0.119)
0.860

(±0.013)
9.661

(±1.604)
1.264

(±0.194)
1.211

(±0.117)
0.857

(±0.013)
10.482

(±1.678)
CorticalFlow++

3.76 sec / 2.82 GB
0.520

(±0.082)
0.711

(±0.044)
0.935

(±0.006)
0.136

(±0.096)
0.528

(±0.079)
0.727

(±0.047)
0.935

(±0.006)
0.245

(±0.167)

Table 2: Out-of-train-distribution evaluation on OASIS3 [14]. ↓ indicates smaller
metric value is better, while ↑ indicates greater metric value is better.

construction. For this comparison, we report the performance of the publicly
available pretrained PialNN model5 (PialNN†) as well as training it by ourselves
in the CSR benchmark training dataset (PialNN?). CorticalFlow++ compares
favourably to both PialNN variants and importantly, it does not need tradi-
tional methods to generate white surfaces.

Finally, we extend our evaluation to an out-of-training-distribution dataset.
More specifically, we use the trained models from the previous experiment to
reconstruct cortical surfaces for a subset of MRIs extracted from the OASIS3
dataset [14]. These generated surfaces are also compared to FreeSurfer V6.0
pseudo-ground-truth surfaces using the same evaluation metrics described above.
As shown in Table 2, CorticalFlow++ significantly outperforms CorticalFlow and
PialNN, while presenting comparable surface reconstruction runtime and GPU
memory consumption.

5 https://github.com/m-qiang/PialNN



CorticalFlow++ 9

5 Conclusion

This paper tackles some limitations of CorticalFlow, the current state-of-the-
art model for Cortical surface reconstruction from MRI, in order to improve its
accuracy, regularity, and interoperability without sacrificing its computational
requirements for inference (reconstruction time and maximum GPU memory
consumption). The resulting method, CorticalFlow++, achieves state-of-the-art
performance on geometric accuracy and surface regularity while keeping the
GPU memory consumption constant and adding less than a second to the entire
surface reconstruction process.

6 Compliance with Ethical Standards

This research was approved by CSIRO ethics 2020 068 LR.

7 Acknowledgements

This work was funded in part through an Australian Department of Industry,
Energy and Resources CRC-P project between CSIRO, Maxwell Plus and I-Med
Radiology Network.



10 R. Santa Cruz et al.

Supplementary Material

Fig. 3: Predicted cortical surfaces for subject 099_S_0551_m36 in ADNI
dataset. The surfaces are color-coded with the distance to the pseudo-ground-
truth surfaces.



CorticalFlow++ 11

Fig. 4: Predicted cortical surfaces for OASIS3 subjects. The surfaces are color-
coded with the distance to the pseudo-ground-truth surfaces.



12 R. Santa Cruz et al.

References

1. Bobenko, A.I., Springborn, B.A.: A discrete laplace–beltrami operator for simpli-
cial surfaces. Discrete & Computational Geometry 38(4), 740–756 (2007)

2. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia,
G.: MeshLab: an Open-Source Mesh Processing Tool. In: Scarano, V., Chiara,
R.D., Erra, U. (eds.) Eurographics Italian Chapter Conference. The Eurographics
Association (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/
ItalianChapConf2008/129-136

3. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmenta-
tion and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

4. Du, A.T., Schuff, N., Kramer, J.H., Rosen, H.J., Gorno-Tempini, M.L., Rankin,
K., Miller, B.L., Weiner, M.W.: Different regional patterns of cortical thinning in
alzheimer’s disease and frontotemporal dementia. Brain 130(4), 1159–1166 (2007)

5. Euler, L.: Institutiones calculi integralis, vol. 4. Academia Imperialis Scientiarum
(1794)

6. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
7. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van

Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., et al.: Whole brain seg-
mentation: automated labeling of neuroanatomical structures in the human brain.
Neuron 33(3), 341–355 (2002)

8. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: Ii: infla-
tion, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207
(1999)

9. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: Fastsurfer
- a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219,
117012 (2020)

10. Herrmann, L.R.: Laplacian-isoparametric grid generation scheme. Journal of the
Engineering Mechanics Division 102(5), 749–756 (1976)

11. Jack Jr, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey,
D., Borowski, B., Britson, P.J., L. Whitwell, J., Ward, C., et al.: The alzheimer’s
disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Reso-
nance Imaging 27(4), 685–691 (2008)

12. Jacobson, A., Panozzo, D., et al.: libigl: A simple C++ geometry processing library
(2018), https://libigl.github.io/

13. Kim, J.S., Singh, V., Lee, J.K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., Lee,
J.M., Kim, S.I., Evans, A.C.: Automated 3-d extraction and evaluation of the
inner and outer cortical surfaces using a laplacian map and partial volume effect
classification. Neuroimage 27(1), 210–221 (2005)

14. LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong,
C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., et al.: Oasis-3: longitu-
dinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer
disease. MedRxiv (2019)

15. Lebrat, L., Santa Cruz, R., de Gournay, F., Fu, D., Bourgeat, P., Fripp, J., Fookes,
C., Salvado, O.: Corticalflow: A diffeomorphic mesh transformer network for cor-
tical surface reconstruction. Advances in Neural Information Processing Systems
34 (2021)

16. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136


CorticalFlow++ 13

17. Ma, Q., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: Pialnn: A fast
deep learning framework for cortical pial surface reconstruction. In: International
Workshop on Machine Learning in Clinical Neuroimaging. pp. 73–81. Springer
(2021)

18. MacDonald, D., Kabani, N., Avis, D., Evans, A.C.: Automated 3-d extraction of
inner and outer surfaces of cerebral cortex from mri. NeuroImage 12(3), 340–356
(2000)

19. Muntoni, A., Cignoni, P.: PyMeshLab (Jan 2021). https://doi.org/10.5281/
zenodo.4438750

20. Press, W., Flannery, B., Teukolsky, S.A., Vetterling, W.: Runge-kutta method.
Numerical recipes in Fortran: The art of scientific computing pp. 704–716 (1992)

21. Rimol, L.M., Nesvåg, R., Hagler Jr, D.J., Bergmann, Ø., Fennema-Notestine, C.,
Hartberg, C.B., Haukvik, U.K., Lange, E., Pung, C.J., Server, A., et al.: Cortical
volume, surface area, and thickness in schizophrenia and bipolar disorder. Biolog-
ical psychiatry 71(6), 552–560 (2012)

22. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

23. Santa Cruz, R., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.:
Deepcsr: A 3d deep learning approach for cortical surface reconstruction. In: Pro-
ceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision.
pp. 806–815 (2021)

24. Schaer, M., Cuadra, M.B., Tamarit, L., Lazeyras, F., Eliez, S., Thiran, J.P.: A
surface-based approach to quantify local cortical gyrification. IEEE transactions
on medical imaging 27(2), 161–170 (2008)

25. Shattuck, D.W., Leahy, R.M.: Brainsuite: an automated cortical surface identifi-
cation tool. Medical image analysis 6(2), 129–142 (2002)

26. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Lapla-
cian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing. pp. 175–184 (2004)

27. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generating
3d mesh models from single rgb images. In: Proceedings of the European conference
on computer vision (ECCV). pp. 52–67 (2018)

https://doi.org/10.5281/zenodo.4438750
https://doi.org/10.5281/zenodo.4438750
https://doi.org/10.5281/zenodo.4438750
https://doi.org/10.5281/zenodo.4438750

	CorticalFlow++: Boosting Cortical Surface Reconstruction Accuracy, Regularity, and Interoperability

