2024 IEEE International Symposium on Biomedical Imaging (ISBI) | 979-8-3503-1333-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISBI56570.2024.10635445

LOCALISATION OF RACIAL INFORMATION IN CHEST X-RAY FOR DEEP LEARNING
DIAGNOSIS

Olivier Salvado'?, Salamata Konate'?, Rodrigo Santa Cruz"?, Andrew Bafaalley2

Judy Wawira Gichoya®, Laleh Seyyed-Kalantari*, Brandon Price®, Clinton Fookes®, Léo Lebra

1.2

! Imaging and Computer Vision Group, CSIRO Data61, Australia
2 SAIVT, Queensland University of Technology, Australia
3 Department of Radiology and Imaging Sciences, Emory University, USA
4 Electrical Engineering and Computer Science, York University, CA
® College of Medicine, Florida State University, USA

olivier.salvado@data6l.csiro.au

ABSTRACT

Deep learning-based classification of diseases from Chest X-
ray has been shown to use implicit information about the sub-
jects’ self-reported race, which could result in diagnostic bias.
In this paper, we describe and compare two approaches to in-
vestigate where racial information is located in the image:
first leveraging non-linear registration and computing atlas
differences and second using saliency maps. We compute
a map visualising the racial information between black and
white subjects and discuss whether those maps are consistent
with the model explanation.

Index Terms— saliency maps, eXplainable Al (XAI),
chest, x-ray, deep learning, atlas-based registration.

1. INTRODUCTION

Chest X-ray is a common and relatively inexpensive medical
exam for investigating many disorders and is well suited for
automated analysis using deep learning [1]. However, a recent
study indicates that a deep learning model trained to classify
diseases also learns information about the self-reported race
of the subject [2]. Naturally, this raises concerns due to the
potential consequences of racial bias during diagnosis.

Recent investigations did not reveal where the model ex-
tracted racial information in the image, something that human
experts could not visually reproduce [2], despite investigating
all available covariates and many image features. In this pa-
per, we expand on those investigations, and try to identify
where in the chest X-ray racial information is located using
explainable methods.

We use the Gichoya et al. [2] trained deep learning model
that classifies the subjects’ race with an accuracy of 97%. We
then compared 2 approaches. First, by building a race-specific
registration atlas (for white and black subjects) and compar-
ing them using bootstrap statistics. Second, we compare av-

eraged saliency maps generated by four recent interpretability
methods.

We show that both approaches provide consistent results
and point towards a similar area of the image that could hold
racial information about the subjects. We first explain our
data and methods before describing the experiments that we
conducted. Finally, we discuss the main results.

2. METHODS AND EXPERIMENTS

2.1. Data

The data from the RSNA-CXR dataset [3] was used for
comparing saliency methods. An EfficientNet Model was
trained [4] to classify no-finding from lung opacity, using 500
images in each class. For the race study, the data was sourced
from the MIMIC-CXR open-source chest X-ray dataset [5].
It includes information about race and other relevant clinical
information. We randomly selected 1000 scans from black
subjects (BS) and 1000 scans from white subjects (WS) for
testing. Racial information was self-reported by subjects. All
images that included foreign objects (wires, tags, implants,
etc.) were manually excluded from this study.

2.2. Saliency maps

Several saliency methods were employed using the TorchRay
package [6], and we selected 3 with the best qualitative re-
sults after experimentation: Gradcam [7], Extremal Pertur-
bation [6], and Rise [8]. The perturbation method required
selecting the proportion of the image to be perturbed, and we
used 10%.

We also used the RankPix method, which was imple-
mented with a slight modification [9].

RankPix requires to arbitrarily define the layers of a
model where multiplicative binary masks are computed. Each
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Fig. 1. Comparison of 4 saliency methods (lines) for 3 chest
X-ray cases (columns) for healthy subjects with negative di-
agnosis but that included foreign objects (wire, devices,...).
Most methods highlight the expected location, with GradCam
and RankPix providing superior results.

mask defines the layer features that are passed through to the
next layer. In our experiments, we used 8 layers distributed
along the depth of the model.

Starting with the deepest layer (closer to the classifier
head), the mask is initialised with “1”’, meaning all the pixels
of that layer are used to compute the model output. Then,
each pixel is visited and changed to O while calculating the
change in the model output. The pixel with the most dif-
ference is selected and kept at O, interpreting it as the most
important pixel to explain the model’s prediction. Then, the
second most important pixel is selected using a greedy ap-
proach on the remaining “1” pixels. This process is repeated
for that layer until the model output changes its prediction
(i.e. from Black to White or vice versa).

Once a mask for a layer is computed, it is interpolated
to the previous layer using transpose convolution taking into
account the kernel size of the layers (all 1s). A similar process
of visiting pixels and retaining the ones changing the model
output is repeated for the new layer, except that the pixels
being visited are only the ones within the interpolated mask

of the previous layer.

Finally, all the masks are up-sampled to the full image
resolution (still using transpose convolution with the corre-
sponding kernel size) and averaged together to build the fi-
nal saliency map, showing the most important area of the im-
age that changes the model’s prediction (explaining the model
output). More details can be found in the original paper [9].

2.3. Comparison of saliency methods

Using the RSNA-CXR dataset, training of a ResNet34
reached an accuracy of 97.99% to classify images with no-
finding from lung opacity. For training, the no-finding class
excluded any images with visible objects (wires, tags, de-
vices, ...). We then tested images with no finding where
inorganic objects were present to investigate whether the
saliency maps would show those objects not included in the
training. Typical qualitative results are shown in Fig. 1. The
RankPix method showed sharper, smaller, and more accurate
localisation of the object(s) assessed visually by the authors.

2.4. Population atlases

We then investigated race localisation using the MIMIC-CXR
dataset. Our goal was to compare the averages of saliency
maps between WS and BS, but for that a resampling of all the
saliency maps to a common template was needed. We thus
built a population template.

First, all images were registered to a randomly selected
image using affine registration and averaged to build an initial
population template. Then all images were registered again
to this template using non-linear registration, and averaged to
construct a new population template. This process was re-
peated 5 times to yield the final population template. The
registration method was a diffeomorphic technique from the
Advanced Normalization Tools (Ants) package [10]. All reg-
istered images were assessed visually for obvious unrealistic
deformation or clipping.

2.5. Group difference and statistical normalisation

The images for the two groups of subjects (WS and BS) were
averaged independently after the previous step, to yield the
average WS and BS templates. Fig 2 illustrates the results, in-
cluding the difference between the two (as a difference map),
revealing some areas with higher and lower intensity between
the two groups. However, since the X-ray intensity is relative,
it is challenging to draw any conclusion. We thus proceeded
to normalise and quantify statistically such differences.

We randomly created 2 groups of images with exactly
half WS and half BS images, and computed the difference.
Under the null hypothesis, that there is no intensity differ-
ence between WS and BS, this should result in a flat im-
age. To account for expected variation, we repeated this 100
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Fig. 2. Average of the WS scans (left), BS scans (centre), and
the difference between the two (right).

times and computed for each pixel the mean I, and stan-
dard deviation I, of the 100 difference maps. Finally, the
difference map between WS and BS Dy, s was normalised:
DW/S = (Dwys — 1,)/1,. As aresult, each pixel can now
be interpreted as a z-score against the null hypothesis. The re-
sults are shown in Fig 3, revealing significant differences be-
tween WS and BS (more than 5 standard deviations) around
the sternum and the shoulders.
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Fig. 3. Mean (left), standard deviation (centre) of difference
maps of 100 random groupings with 50% WS and 50% BS.
The difference map between WS and BS normalised as a z-
score is shown on the right.

2.6. Population atlas of saliency maps

A second approach using saliency maps could then be used,
leveraging the same population template technique as de-
scribed above.

A model with a ResNet34 backbone was trained to clas-
sify self-reported race, yielding an area under the curve of
0.97 and 0.97 for BS and WS, respectively. More details
about the data, similar model, and the results about race clas-
sification can be found in Gichoya et al. [2].

Saliency maps were computed using the 4 methods de-
scribed in Section 2.2. The non-rigid deformation described
in Section 2.4 resulted in a diffeomorphic deformation field
that could be inverted to deform the saliency map of each
subject, originally computed in the native image space, to the
template space. Saliency maps for each group could then be
averaged to yield group specific saliency (Fig 4).
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Fig. 4. Average of saliency maps for black subjects (left) and
white subjects (right) for the 4 saliency methods.

3. RESULTS AND DISCUSSION

We have described two approaches to investigate where racial
information is located within a chest X-ray. The first method
showed the calibrated difference between the 2 group tem-
plates, whereas the second method averages saliency maps
per group. The results are consistent but also present some
differences. Indeed, both approaches suggest that the X-ray
intensity of the sternum and clavicle areas are different (more
dense for white subjects).

Saliency maps are prevalent techniques to explain a deep
learning model output. Various methods exist, and we tested
4 of the more promising ones. All aim to “explain” the model
output. It is challenging to compare different saliency maps
as no ground truth is available, and all optimise the map dif-
ferently. We first qualitatively compared saliency methods by
excluding any X-ray that showed devices and wires from the
dataset during training. During testing on the X-ray that had
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been removed, we expected the saliency map to highlight the
abnormal objects. They all did, but with various usefulness.
Extremal Perturbation tended to provide a circular area and
was challenged when multiple objects were present (Fig 1,
middle column). The RISE method resulted in diffuse and
mostly uninformative maps. Gradcam and Rankpix provided
the most informative results, with Rankpix providing sharper
and more defined areas.

We also described a method comparing atlases between
the two groups. Averaging X-rays of each group and looking
at their difference ought to show where the intensity is differ-
ent. This kind of approach is routinely used for brain anal-
ysis, such as voxel brain morphometry (VBM) [11]. How-
ever, in VBM, the average of segmentations is analyzed (in-
stead of the intensity), which requires compensating for the
anatomical deformation introduced by the registration. For
chest X-rays, the X-ray absorption (x-ray intensity) was in-
vestigated instead of the anatomical differences, which pre-
sented too much dissimilitude to be meaningful in our exper-
iments. Further analysis of the anatomical variation between
groups using careful non-rigid registration will be the subject
of future work.

Comparing group intensity averages could be achieved
in a statistically meaningful way by bootstrapping the null
hypothesis to compute the z-score for each pixel. We did
not correct for multiple comparisons because the results were
very large homogeneous areas (as opposed to noisy or patchy
output).

The results using two different approaches are consistent
and point to the sternum and clavicle as candidate sources of
information. The actual physiological, anatomical, or con-
founding reasons to account for this difference remains to be
elucidated, but our work present an important first step to-
wards this goal.

4. ETHICS AND ACKNOWLEDGEMENT

This research study was conducted retrospectively using
human subject data made available in open access (see
section2.1). Further approval was secured through CSIRO
ethical board. This work was funded in part through an Aus-
tralian Department of Industry, Energy and Resources CRC-P
project between CSIRO, Maxwell Plus and I-Med Radiology
Network.

5. REFERENCES

[1] Jarrel C.Y. Seah, Cyril H. M. Tang, Quinlan D. Buchlak,
Xavier G. Holt, Jeffrey B. Wardman, Anuar Aimoldin,
Nazanin Esmaili, Hassan Ahmad, Hung Pham, John F.
Lambert, Ben Hachey, Stephen J. F. Hogg, Benjamin P.
Johnston, Christine Bennett, Luke Oakden-Rayner, Pe-
ter Brotchie, and Catherine M. Jones, “Effect of a
comprehensive deep-learning model on the accuracy of

(2]

[4]

(5]

(6]

(8]

[9]

[10]

(11]

chest x-ray interpretation by radiologists: a retrospec-
tive, multireader multicase study,” The Lancet Digital
Health, vol. 3, no. 8, pp. e496-e506, Aug. 2021, Pub-
lisher: Elsevier.

Judy Wawira Gichoya, Imon Banerjee, Ananth Reddy
Bhimireddy, John L Burns, Leo Anthony Celi, Li-Ching
Chen, Ramon Correa, Natalie Dullerud, Marzyeh Ghas-
semi, Shih-Cheng Huang, et al., “Ai recognition of pa-
tient race in medical imaging: a modelling study,” The
Lancet Digital Health, 2022.

RSNA  Pneumonia Detection, “Kaggle,”
https://www.kaggle.com/c/rsna- pneumonia-detection-
challenge, 2018, Accessed: August 2019.

Mingxing Tan and Quoc Le, “Efficientnet: Rethinking
model scaling for convolutional neural networks,” in
International conference on machine learning. PMLR,

2019, pp. 6105-6114.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Roger G Mark, and Steven Horng, “Mimic-
cxr, a de-identified publicly available database of chest
radiographs with free-text reports,” Scientific data, vol.
6, no. 1, pp. 1-8, 2019.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi, “Un-
derstanding deep networks via extremal perturbations
and smooth masks,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2019, pp.
2950-2958.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra, “Grad-cam: Visual explanations from deep net-
works via gradient-based localization,” in Proceedings
of the IEEE international conference on computer vi-
sion, 2017, pp. 618-626.

Vitali Petsiuk, Abir Das, and Kate Saenko, “Rise: Ran-
domized input sampling for explanation of black-box
models,” arXiv preprint arXiv:1806.07421, 2018.

Salamata Konate, Léo Lebrat, Rodrigo Santa Cruz,
Clinton Fookes, Andrew Bradley, and Olivier Salvado,
“Bias identification with rankpix saliency,” in ICASSP
2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 1EEE,
2023, pp. 1-5.

Brian B Avants, Nick Tustison, Gang Song, et al., “Ad-
vanced normalization tools (ants),” Insight j, vol. 2, no.
365, pp. 1-35, 2009.

J. Ashburner and K.J. Friston, “Voxel based morphome-
try,” in Encyclopedia of Neuroscience, Larry R. Squire,
Ed., pp. 471-477. Academic Press, Oxford, 2009.

Authorized licensed use limited to: Queensland University of Technology. Downloaded on August 07,2025 at 07:36:29 UTC from |IEEE Xplore. Restrictions apply.



