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MOTIVATION AND OBJECTIVES RESULTS

« We introduce SMOCAM (SMOoth Conditional Attention Mask), an optimization method that reveals the specific regions of the input image + Dataset:T1 weighted 3D-MRI scans
considered by the prediction of a trained neural network for brain morphometric measurement. + Model: regression model based on the VGG framework train with Mean square error and produce 165 morphometric measurements.

+ SMOCAM performs saliency analysis for complex regression tasks for 3D medical image with deep convolutional neural networks.
+ SMOCAM optimizes an attention mask at a given layer of a convolutional neural network (CNN) in 40secondes. Different methods of saliency maps for the volume prediction of the right lateral ventricle

« This attention mask is point-wise multiplied for all the features at a certain depth of the CNN, we wish to find a mask that yields a minimal prediction
error, and which is spatially smooth given a limited L2 budget.

+ SMOCAM can help to identify neural network’s limitations when cases are underrepresented as cases with large volume asymmetry.
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« The neural network estimated a hemispherical asymmetry of 0.10cm?3whereas the ground truth variation was 10 times bigger. We hypothesized that
only one hippocampus was used for both left and right predictions because on average both sides are well correlated and that large asymmetries are
underrepresented in our training dataset.

» Pass the masked feature map F,©Md through the remaining layers of the network.
+ The modified predictions DNNy, is therefore obtained for a selected brain morphometric

measurement output o;.
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* Problem solves using its Tikhonov form by adding a regularization term R, that promotes spatial smoothness of the mask: e
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with ¢ the standard deviation of the output measurement. y and A two hyper-parameters, distribution of the training dataset (blue) and prediction made
by the deep-learning model (red).
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+ SMOCAM produces localised attention maps relatively fast for 3D regression models.

Salamata.konate@hdr.qut.edu.au



http://www.tcpdf.org

