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Fig. 1: Saliency maps for the volume prediction of the right lateral ventricle. Saliency methods from left to right:
SMOCAM (ours), Grad-CAM, DeconvNet, gradient-based saliency, and Guided backprop.

ABSTRACT

Despite the pervasive growth of deep neural networks in med-
ical image analysis, methods to monitor and assess network
outputs, such as segmentation or regression, remain limited.
In this paper, we introduce SMOCAM (SMOoth Conditional
Attention Mask), an optimization method that reveals the spe-
cific regions of the input image taken into account by the pre-
diction of a trained neural network. We developed SMOCAM
explicitly to perform saliency analysis for complex regression
tasks in 3D medical imagery. Our formulation optimises an
3D-attention mask at a given layer of a convolutional neural
network (CNN). Unlike previous attempts, our method is rel-
atively fast (40s per output) and is suitable for large data such
as 3D MRI. We applied SMOCAM on a CNN that predicts
Brain morphometry from 3D MRI which was trained using
more than 5000 3D brain MRIs. We show that SMOCAM
highlights neural network’s limitations when cases are under-
represented and in cases with large volume asymmetry.

Index Terms— Deep Learning, Explainability of regres-
sion models, Saliency maps.

1. INTRODUCTION

Neural networks used for machine learning have shown very
high accuracy but low explainability, which have hindered
their translation to medical applications. Drawing from re-
cent progress in computer vision, one can use spatial sensitiv-
ity analysis to produce saliency maps, showing the locations
in the image that ”explain” network outputs. For instance,
gradient-based saliency methods like Simonyan et al. [1],
DeconvNet [2], Grad-CAM [3], and Guided-backprop [4]
use gradient information and re-normalization to compute

Thanks to Maxwell plus http://maxwellplus.com/.

saliency maps highlighting the image regions that influence
the prediction the most. While these methods are lightweight,
they tend to produce scattered saliency maps that are difficult
to interpret as shown in Figure 1.

Recently, optimization-based saliency methods have been
proposed [5–7]. They optimize the localization and shape of
a mask to obtain a more informative explanation map. For
example, in the context of medical image analysis, the work
of Fong and Vedaldi [5] has been successfully applied to the
automatic diagnosis of Alzheimer’s disease (AD) [8]. How-
ever, that method remains limited to tissue probability maps
and simple binary classification problems like AD patients vs.
Healthy Control.

In this paper, we propose a novel approach to perform
saliency analysis when a CNN has been trained to regress
morphometric measurements from non-registered 3D MRI,
such as cortical thickness, gray matter volume, or cortical
curvature. A recent optimization method by Fong et al. [6]
yields a computationally intensive solution that is challenged
by large 3D volumetric data. Rather, we improved on the
work of Taha et al. [7]: we optimize an attention mask within
the neural network, more specifically, on a feature map pro-
duced by a convolutional layer. The resulting conditional at-
tention mask is then processed back to the original image res-
olution for saliency analysis. We name our approach SMO-
CAM (SMOoth Conditional Attention Mask).

In the following, we describe the CNN model used for
brain morphometry regression from 3D brain MRI. We then
present our proposed SMOCAM method, highlighting some
specific necessary adjustments for obtaining a fast and re-
liable optimization. Finally, we use SMOCAM’s saliency
masks to analyze the predicted volume of the ventricle, puta-
men, and hippocampi.



2. BRAIN MORPHOMETRY USING CNN

Morphometric measurements of the brain’s anatomical struc-
tures are important non-invasive biomarkers associated with
neurodegenerative disorders [9, 10]. Traditionally, image pro-
cessing pipelines such as the popular FreeSufer [11] can take
several hours per MRI to produce cortical surfaces that are
then processed to predict clinically meaningful metrics such
as grey matter volume, cortical thickness, or brain surface
curvature. Recently, processing time has been reduced to
less than one hour by novel CNN based segmentation model
[12] or devising novel formulation for cortical surface estima-
tion [13]. Another promising approach is to directly estimate
those metrics from the 3D MRI without a need for segmenta-
tion or cortical surface estimation. We are interested in those
later methods and use in this paper the model proposed by
Rebsamen et al. [14]. One limitation of regressing imaging
biomarkers directly from a scan is the lack of explainability.
It is unclear when a network produces an estimate of what
imaging information has been used. For example, common
sense dictates that the left hippocampus area should be used
to estimate the left hippocampus volume, but we show here
that it is not always the case as demonstrated by SMOCAM.

2.1. CNN for brain morphometry estimation

The regression model that we have used in this paper is based
on the VGG framework [14]. It consists of three 3D convolu-
tional layers with ReLU activation function and max-pooling
followed by 3 fully connected layers. The neural network is
then trained to minimize the mean squared error on the train-
ing set using batches of 6 MRI-images and the ADAM opti-
mizer. The final model is selected for the best intra-class cor-
relation coefficient on the validation set using early-stopping.
This model produces 165 morphometric measurements from
T1 weighted 3D-MRI. We refer the reader to the original pub-
lication [14] for more details.

2.2. Data

The data comprises T1w MR scans from two public datasets:
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [15] and the Australian Imaging, Biomarkers and
Lifestyle (AIBL) study [16]. The training set comprises
5, 632 MR-images of dimension 164×172×202. The ground
truth bio-markers are estimated using FreeSurfer: 29 sub-
cortical structure volumes and 68 mean thickness and mean
curvatures. All are using the parcellations obtained from
Freesurfer V6.0 cross-sectional pipeline (more details on the
dataset can be found in [17]).

3. SMOCAM

Given a 3D input image I and a pretrained deep neural net-
work regression model denoted as DNN : I → R, SMOCAM

computes an attention maskM for a given layer, that is then
interpolated to obtain a saliency map at the same dimensions
of the input image such that it assigns higher values to voxels
that are more relevant to the predictions. The choice of the
layer depends on the structure of interest. Optimizing a mask
for the last layer would encompass a large part of the whole
brain and would not be specific to any brain structure in par-
ticular. We thus compute the attention mask at a feature map
with dimensions Ld ×Hd ×Wd ×Dd and then upsample it
to the input image dimensions to perform saliency analysis.
As described in Figure 2, the feature map Fd at a layer d is
element-wise multiplied � with a mask of same dimensions
Md. The masked feature map Fd�Md is passed through the
remaining layers of the network to obtain the modified predic-
tions DNNMd

. In the case of the brain morphometry regres-
sion model described in Section 2.1, we compute a saliency
mask for each output measurement independently.

Therefore, given a fixed L2 budget ‖Md‖2 = 1, our goal
is to find a saliency mask Md such that the prediction after
masking the feature map DNNMd

is as close as possible to its
original value DNN. Formally,

argmin
Md

s.t. ‖Md‖2=1

d(DNNMd
,DNN), (1)

where d is a normalized distance function. We solve this
problem using its Tikhonov form by adding a regularization
termRs that promotes spatial smoothness of the maskMd,

argmin
Md

d(DNNMd
,DNN)+λR‖•‖2(Md)+γRs(Md), (2)

where,

d(a, b) = σ−1‖a− b‖1, R‖•‖2(Md) = |1− ‖Md‖2|,

Rs(Md) =
1

3
(‖∇xMd‖1 + ‖∇yMd‖1 + ‖∇zMd‖1),

with σ the standard deviation of the output measurement. The
resulting optimization problem is non-convex and has two
hyper-parameters γ and λ that balances smoothness with the
L2-norm. We now present a few optimization tricks that help
convergence towards satisfactory minima:
Step-size selection: We optimize the cost function of Equa-
tion (2), here denoted by f(Md), using a gradient method.
We found the selection of the gradient step-size τ to be im-
portant: too large we noticed oscillation, while too small we
observed stagnation of the solution. To avoid arbitrary heuris-
tics in selecting the step-size or a decay rate, we used an adap-
tive step-size with Armijo condition [18]: f(Md)−f(Md−
τ∇Md) > 0. Usually, this test is performed within a back-
tracking line search that can be time-consuming. To avoid this
extra computation, we test the condition once; if it is not met,
we decrease the value of τ with the update τ = 0.99τ .
Stopping criterion: Similarly to [7], our stopping criterion is
the stagnation of cost function: |F (Mi−50

d )− F (Mi
d)| ≤ 10−5
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Fig. 2: Given a feature map Fd at a depth d of dimension Ld ×Hd ×Wd ×Dd, we piece-wise multiply each layer (Li)i=1..n

with the maskMd of dimension 1×Hd ×Wd ×Dd. The resulting feature map is then plugged back to the next convolutional
layer. We also select a particular output oi (red square) which, in our context is a single morphometric measurement.

Mask size1 553 273 143 63

Time for 1k iterations 59 s 56.6 s 42 s 38.2 s

Table 1: Run-time analysis for different mask size.

where Mi
d is the optimized saliency mask at the i iteration.

We also fix the maximal number of iterations to 2, 000.
Initialization: Random initializing the saliency mask leads
to different solutions since our problem is not convex and has
a myriad of local minima. For this reason, we set the initial
mask to be uniformM0

d = 1.1 1
‖1‖2 .

Obtaining the final saliency mask: The saliency obtained
after optimization is usually not sparse with many very small
coefficients (≈ 10−4). One approach is to promote sparsity
with a penalty term of the type ‖Md‖1, but this method in-
volves a third hyper-parameter to select. Instead, we opt for
hard thresholding the values below the 95th percentile.
Implementation details: SMOCAM is implemented using
Pytorch and the autograd package. The runtime of such
method depends on the location of the required mask and on
the number of iteration required by the gradient optimization
to converge. In our experiment, the mask’s size is 14×14×17
and it takes on average 950 iterations to achieve convergence
resulting in 40 seconds on average per scan. In Table 1, we
provide a run-time analysis for different layers, see [14] for
the neural network architecture details.

4. ANALYZING BRAIN MORPHOMETRIC
MEASUREMENTS WITH SMOCAM

In this section, we present a quantitative analysis of morpho-
metric measurements using SMOCAM, the brain morphom-
etry regression model presented in Section 2.1, and 200 MRI

1To shorten the notation we used the dimensions of the sagittal plane, the
mask size is larger in the coronal plane.

scans randomly chosen from the test split of the dataset de-
scribed in Section 2.2. Using this dataset and model, we run
SMOCAM with a regularization coefficient of λ = 1, mask
smoothness coefficient of γ = 30 (λ and γ are problems de-
pendent and determined using a grid-search), and learning-
rate of τ = 10−2 to obtain saliency masks for the prediction
of a chosen morphometric measurement. Then, we intersect
these generated masks with the ground-truth brain parcella-
tions to obtain the model’s attention at a given brain region.

Fig. 3: Bivariate plot between the right lateral ventricle (x
axis) and the right putamen (y axis) volumes within the train-
ing dataset. The dispersion of the distribution of these mea-
surements in terms of coefficient of variation is 55% for the
right lateral ventricle and 15% for the right putamen.

More specifically, we first focus on the prediction of the
volumes for the right lateral ventricle and right putamen. The
evaluated brain morphometry regression model presents an
excellent performance (ICC = 0.95) for the former and a
lower performance (ICC < 0.65) for the latter. We hypoth-
esized that the performance of the network is correlated with
the variability of the measurement in the training data, which



Fig. 4: Average attention per anatomical structure (Red for the ventricles, green for the putamina and grey for the other
structures) normalized by their area of the right lateral ventricle (left) and the right putamen (right).

is lower for the putamen than for the ventricle as shown in
Figure 3. Indeed, Figure 4 shows the average attention by
anatomical structure normalized by their area. SMOCAM’s
saliency masks focus on the brain regions related to the pre-
dicted measurements and their neighborhood. The attention
is also correlated to the variability of the region of interest,
the more its value fluctuates within the training dataset, the
more the region contains information which is relevant for the
neural network to build its prediction. The prediction of the
ventricle is therefore more accurate than the right putamen.

We also noticed that for predicting the volume of the right
lateral ventricle, the attention is equivalently spread across the
right and the left structures, with no significant difference be-
tween the two sides (p-value = 0.3). This does not prevent
the network from producing accurate predictions for each side
since both sides of the ventricle volume are highly correlated
(Pearson correlation coefficient of 0.914 and ICC of 0.893).
However, it is clearly a flawed estimate of individual volumes
and should not be used as such for further analysis to investi-
gate disease progression or etiology.

Finally, we describe a limitation uncovered by SMOCAM
for the volume prediction of the Hippocampi. Figure 5 shows
that the attention for the prediction of both hippocampi in this
subject was localized on the left hemisphere. Indeed, the neu-
ral network estimated a hemispherical asymmetry of 0.10cm3

whereas the ground truth variation was 10 times bigger. We
hypothesized that only one hippocampus was used for both
left and right predictions because in average both sides are
well correlated and that large asymmetries are underrepre-
sented in our training dataset (see Figure 6).

5. CONCLUSION

This manuscript introduces SMOoth Conditional Attention
Mask (SMOCAM) a saliency method for neural network
based regression models from 3D imagery. We showed that
SMOCAM revealed serious limitations and issues when es-

Fig. 5: Patient with large assymetry of the ventricule 1.12cm3

(left), attention mask for the right hippocampus volume (mid-
dle), attention mask for left hippocampus volume (right).

Actual asymmetry

Model prediction

Normalized hippocampi asymmetry

Fig. 6: Normalized hippocampi asymmetries (right hemi-
sphere minus left hemisphere volume), position of the indi-
vidual within the distribution of the training dataset (blue) and
prediction made by the deep-learning model (red).

timating bio-markers from 3D T1w MRI of the brain, and
should therefore be considered before concluding about the
accuracy of CNN based regression methods.
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