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Abstract—Saliency methods are widely used to visually explain
“black-box” deep learning model outputs to humans. These
methods produce meaningful maps which aim to identify the
salient part of an image responsible for, and so best explain,
a Convolutional Neural Network (CNN) decision. In this paper,
we consider the case of a classifier and the role of the two main
categories of saliency methods: backpropagation and attribution.
The first method is based on the gradient of the output with
respect to the network parameters, while the second tests how
local image perturbations affect the output. In this paper, we com-
pare the Gradient method, Grad-CAM, Extremal perturbation,
and DEEPCOVER, and highlight the complexity in determining
which method provides the best explanation of a CNN’s decision.

Index Terms—saliency, interpretability, CNN

I. INTRODUCTION

Neural networks for machine learning have drawn signif-
icant attention since the evolution of artificial intelligence
(AI). Within the field of computer vision, scientists have
developed and applied models for a range of tasks including
semantic segmentation [1], image classification [2], object
recognition [3], and human motion tracking [4]. These models
are getting more powerful and accurate, which increases the
complexity of neural networks making them deep models.

One of the significant issues with deep learning models
is their behaviour as a black-box. As such, it is difficult
to understand their decisions and to discover insights into
what information the model’s predictions have been based
on. Indeed, when applying DNN models to real life, such as
medical imaging, one should aim to prove a robust, trusted and
effective model. In 2018, the European Union released new
regulations that stipulate that automated processing should be
able to provide an explanation to end users [5, 6].

Recent interest has focused on the development of tech-
niques to interpret imaging DNN models to provide a better
understanding of what the network is looking at. In this
paper, we focus on saliency techniques to explain deep neural
networks. Saliency methods aim to create a map that contains
the most important pixels/regions of an image responsible for
the network’s decision. These methods can be divided into
two categories, backpropagation techniques and perturbation
techniques [7]. Backpropagation techniques consist of com-
puting the gradient of the output and backpropagating it into
the image domain to obtain the salient regions which influence

the prediction. These techniques include the gradient-based
method [8], Deconvnet [9], Guided BackPropagation [10],
SmoothGrad [11], CAM [12] and Grad-CAM [13]. All of
these gradient-based methods [8] modify either the gradi-
ent computation algorithm or the network architecture. The
second category of methods is perturbation methods which
consist of finding the minimum perturbation of the pixels
in the input image, which maximize the prediction output.
Occlusion [9], RISE [14], Shapley value method [15–17],
LIME [18], minimal [19] and extremal perturbation [20], and
DEEPCOVER [21], occlude the images with either black or
grey patches and calculate the impact on the image prediction.
However, the occlusion algorithms differ from one method to
another.

Even though saliency maps are gaining success in the
domain of explainability for deep learning, some issues re-
main. In 2018, Adebayo et. al [22] demonstrated that many
backpropagation-based algorithms have explainability limita-
tions. The first issue is their sensitivity to both the model and
the training dataset. Indeed, many of them fail to highlight
the salient region of outlier images and are not robust enough
to debug neural network models. The second issue [22] is
the similarities and differences of the generated maps of
these algorithms. In addition, multiple gradient-based methods
yield scattered maps, which make the maps hard to interpret.
Similarly, Kindermans et. al [7] show the lack of reliability
of attribution methods as their maps are sensitive to input
variation. These issues raise the need to further examine,
understand, and compare the inner workings of state-of-the-art
saliency methods for DNNs.

In this paper, we propose to compare state-of-the-art
saliency models and discuss their characteristics. We will show
that although all methods can highlight salient regions of an
image responsible for the decision, it is difficult to qualitatively
compare the maps as they do not always show the same area.
Indeed, saliency maps are supposed to show the regions the
network used to form its decision, however, these regions are
often completely different for the same network architecture
depending on the choice of the saliency method employed.

The methods that we investigate are Gradient method [8],
Grad-CAM [9], Extremal perturbation method [20], and
DEEPCOVER [21]. We compare the maps of the different
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methods by first showing typical examples which yield to the
same highlighted area. We then present examples where the
four methods provide contradictory maps. Finally, we discuss
important aspects and limitations of the different methods and
report their processing time.

II. METHODS

A. Deep Neural Networks DNN

Given a deep neural network (DNN) F with N layers,
F (x) = y predicts the class of a given colour image x :
Ω −→ R3 where Ω = {0, ...,H − 1} × {0, ...,W − 1} is
a discontinuous domain. In this paper we investigate multi
class classification. In this particular study, we investigate
DNNs for Imagenet [23] such that Cclasses = 1000 and
y ∈ [0, 1]1000. The aim of the saliency methods is to find the
most representative subset of the image x which is responsible
for the decision y. There are several techniques to identify this
‘best’ subset which yields different saliency methods. In the
next section we describe some predominant approaches.

B. Saliency methods

Backpropagation-based methods: Many saliency meth-
ods are builds upon a backpropagation algorithm. These
methods highlight the region of conspicuity of the image,
which contributes toward the classification by computing the
gradient of the network output with respect to each image
pixel. Simonyan et al. [8] proposed to backpropagate the
gradient of the network output to the input image to visualise
the region responsible for the prediction. It only required a
single backward pass from the output prediction to the input
image to generate the mask. Similarly, Deconvnet [9], Guided
BackPropagation [10] and SmoothGrad [11] computed the
gradient but proposed to improve the quality of the saliency
maps by reducing its bias and noise by either modifying the
backpropagation computation or by average perturbing the
saliency maps. To localise salient regions better, CAM [12]
proposed to modify the network and Grad-CAM [13] to
combine the gradient weight activation.

In this study, we consider the Gradient-based [8] and the
Grad-CAM methods [13] that we explain below.

• Gradient-based method was proposed by Simonyan et.
al in 2013 [8]. They introduced the concept of saliency
maps in deep learning. Given an image x, a class c and
a learned DNN model with a class score Fc(x), saliency
maps were computed based on the gradient w, defined
as the derivative of Fc with respect to the image x at
the point x0. The vector w backpropagated the gradient
through the DNN to find the pixels which had the most
influence on the prediction, as per Eqn. (1).

w =
∂Fc

∂x
|x0 . (1)

Finally, the saliency map was computed by reorganizing
the elements of the vector w to extract the maximum
magnitude Mij : Mij = |wh(i,j)|, h(i, j) being the index

of the element w at the ith line and jth column. The
gradient w considered the pixels to be the most salient
as the least perturbed pixels that change the output
prediction the most.

• Grad-CAM [13] produced an activation map that iden-
tified the discriminative region of an image in a single
forward-pass. It is a generalisation of the earlier CAM
method [12] without requiring the modification of the
network architecture. To find the salient map, Grad-CAM
first computed the gradient of the image class c with
respect to the activation of the k features maps of the
last convolutional layer, i.e. ∂Fc

∂Ak
ij

. Second, the neuron
importance weights αc

k was computed by global-average-
pooling the gradient as,

αc
k =

1

Z

∑
i

∑
j

∂Fc

∂Ak
ij

, (2)

with Z being a normalization factor. Finally, they per-
formed the weighted average of the feature maps with
the coefficient αc

k computed in (2). The localization map
Grad-CAM M c

Grad−CAM was then obtained by applying
a ReLU on this average,

M c
Grad−CAM = ReLU(

∑
k

αc
kA

k). (3)

The ReLu activation unit removed the negative influence
for a given class of interest.

Attribution based methods: These methods are also known
as perturbation methods as they perturb the image and observe
its impact on the output prediction. These aim to find the
influence of each input pixel on the output value. Occlu-
sion [9] and RISE [14] identified different sections of the
input image by occluding random patches with the value zero.
The prediction performance of the occluded image was then
compared with the non-occluded image prediction. Shapley
value method [15–17] instead, computed the difference of
the average of different feature value combinations. LIME
method [18] differed from other methods as it performed the
linear approximation of the model to find the saliency map of
an image. Recently, Fong et al. proposed minimal [19] and
extremal [20] perturbation methods to visualise the important
regions of the image responsible for the DNN decision. Sun
et al. [24] suggested to use statistical fault localization (SFL)
techniques [21] to compute a DEEPCOVER saliency map. In
this paper, we considered the extremal perturbation [20] and
DEEPCOVER methods [24].
• Extremal perturbation method was developed by Fong

et al. in 2019 [20]. It looked for the set of pixels within
the image which maximally affect the output prediction
to understand deep networks by masking the pixels with
a smooth mask. This study proposed to maximize the per-
turbation of an image so that the effect on the prediction
was minimal. To this end, a gaussian blur mask m was
applied to the input for a given size area of the mask
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a|Ω|. Eqn (4) computes the mask ma that maximizes the
model’s prediction for a chosen size a and a fixed class
c,

ma = argmax
m:||m||1=a|Ω|,m∈M

Fc(m⊗ x). (4)

The extremal perturbation method minimally perturbed
an image with a smooth mask to alter the prediction the
most.

• DEEPCOVER method is a ranking pixel method devel-
oped by Sun at al [24]. They defined an explanation as a
minimal and sufficient subset of the input image to make
the DNN predict the correct class. DEEPCOVER was a
black-box method that used Statistical Fault Localization
measures (SFL) [21] to produce an explanation map.
SFL is a element-ranking algorithm used to detect default
localisation in a program. DEEPCOVER assigned a score
to each randomly masked pixel pi of an input image
x using SFL measurement. The score was seen as a
vector 〈aiep, aief , ainp, ainf 〉 of passing p or failing f tests
when the pixel was either executed e (not masked), or
not executed n (masked). Four types of SFL measures:
Zoltar [25], Ochiai [26], Tarantula [27] and Wong−
II [28] were investigated for the ranking procedure,

Ochiai :
asef√

(asef + asnf )(asef + asep)
, (5a)

Tarantula :

as
ef

as
ef+as

nf

as
ef

as
ef+as

nf
+

as
ef

as
ep+as

np

, (5b)

Zoltar :
asef

asef + asnf + asep +
1000as

nfa
s
ep

as
ef

, (5c)

Wong − II : asef − asep. (5d)

After scoring all the pixels, they were sorted in descend-
ing order (higher values first). Ordered pixels were then
added one by one until the network could predict the
correct image class with the given subset of pixels. The
obtained group of pixels thereby constituted the SFL
explanation map.

III. EXPERIMENTS

We compared the four methods described above: Gradient
saliency [8], Grad-CAM [13], extremal perturbation [20] and
DEEPCOVER method [24]. We used the pre-trained VGG16
network of Pytorch developed by [8]. As described in Figure 1,
VGG16 consists of 16 weighted convolutional and dense
layers, 5 max-pooling layers and a Rectified Linear Unit
(ReLU) activation on each layer. We randomly sampled 1000
images of 224x224 pixels from the Imagenet dataset [23] as
inputs images.

We first compared saliency maps between the different
methods for typical examples, showing the corresponding
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Fig. 1. VGG16 network architecture.

binary masks by masking the non-salient part of the image.
Second, we reported the processing time and parameters
needed to compute the saliency maps for each method. Finally,
we showcased examples where the methods generated differ-
ent maps highlighting obvious discrepancies and associated
challenges for interpreting the network decision.

A. Comparison of saliency maps

We illustrate in Figure 2 typical examples of maps generated
by the four methods using the VGG16 network to classify
images from ImageNet: Gradient, Grad-CAM, Extremal Per-
turbation 1, and DEEPCOVER 2.

We computed and compared all the methods with the
same stopping criterion. We aim to produce the minimal
set of salient pixels to predict the input image class. The
DEEPCOVER map was as described in the original publi-
cation [24]. We modified the three other methods to allow for
a fair comparison. We used [20]’s TORCHRAY module for
producing a raw saliency map showing a heat map for every
pixel. Then, we ordered the pixels in descending order (higher
value to lower value). Finally, we added those pixels in their
rank order one by one and computed the network prediction
until the prediction for the set of salient pixels was the same
as the input image prediction output using the full image.

B. Processing time and parameters

Table I shows the parameters needed as input for each
method as well as the processing time to generate the saliency
map and the processing time while applying our stopping
criterion. We thus measured the processing time to obtain an
area that produced the correct class of each image. We show
the average and standard deviation for 1000 images randomly
selected from ImageNet [23]. For the extremal perturbation
method, we tested a range of image areas ranging from 0 to
100%. We chose the smallest area that produced the correct
class.

C. Manually selected examples

Figure 3 showcases examples where the 4 methods provide
4 different maps.

1Gradient, Grad-CAM, and Extremal perturbation are from https://github.
com/facebookresearch/TorchRay.

2DEEPCOVER is from https://github.com/theyoucheng/deepcover
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Fig. 2. Comparison of saliency map methods. We compare state-of-the-art saliency methods with the minimal essential pixels of the map to predict the
input image class. From left to right: input image, gradient-based saliency, Grad-CAM, Extremal perturbation, and DEEPCOVER.
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TABLE I
RUN-TIME ANALYSIS AND PARAMETERS OF DIFFERENT METHODS.

Methods Processing time (min) Processing time (min) Parameters
without stopping criterion with stopping criterion

Gradient 1.5e-4 ±1.04e-5 2.9 ±1.1 None
Grad-CAM 1.5e-4 ±3.18e-5 1.2 ±1.1 layer (n ∈ N )
Extremal 1.9e-1 ±4.9e-4 2.2 ±2.4 area (a ∈ [0, 1])

DEEPCOVER
measure (zoltar, tarantula...)

41.3 ±11.4 41.3 ±11.4 test suite size (s)
fraction of masked pixel (σ)

IV. DISCUSSION

We compared four widely used saliency map methods
using an experimental method allowing a fair assessment by
computing the minimal set of pixels that provide the same
output as the original image. We showed typical examples in
Figure 2 along with the processing time and main parameters
in Table I. We also selected six examples of images where the
methods provided different maps illustrating some conflicting
results that are now discussed.

The stopping criterion for each method differs, challenging
the aim for a fair comparison. The DEEPCOVER study [24]
defined a quality explanation map as a minimum set of input
image pixels that predict the class. Nevertheless, as shown
in Table I, one of the parameters needed for the extremal
perturbation method is the size of the saliency area. Some
authors have argued [20] that the size of the saliency maps
might not be essential to determine whether a saliency map
is useful. However, when comparing the methods, randomly
choosing the size of the extremal saliency map will create a
bias with the other maps. One option can be to set the size of
the saliency map to be identical for all the methods. Setting
the size of the maps can help to visually compare the different
techniques by deducing which one generates the most accurate
map to predict the class. However, choosing an arbitrary size
can be subjective without any prior information. Intuitively,
we would like to have the smallest region of interest that
can explain the model output. Thus, we decided to apply the
DEEPCOVER stopping criteria to all the techniques although,
doing so might limit the other methods. The DEEPCOVER
criterion applied to other methods may generate non-optimal
maps.

Processing time varies greatly between methods. Table I
shows the parameters and the processing time for each method.
DEEPCOVER requires setting more parameters and is the
slowest method (40 min on average per image), about 15 times
slower than the other methods when applying our stopping
criterion. However, the processing time of DEEPCOVER
may vary depending on the chosen size of the test set and
the chosen parameters. In addition, the SFL measurement
influences the quality of the saliency maps. The authors of
DEEPCOVER did not specify which measure they used in
their publication but rather mentioned that there is no best
measure as it depends on the input image. We investigated
the proposed SFL and decided on the Tarantula measure:

Equation 5b as it was providing better and more consistent
results. In terms of size, the DEEPCOVER salient region is
larger than the others as seen in Figure 2, while Grad-CAM
and extremal perturbation maps look very similar in size.

Some methods require user inputs. Grad-CAM is the fastest
method as shown in Table I. However, it requires the user to
identify the layer of the computed maks. Generating a map in
a layer other than the last layer might result in the saliency
map being difficult to interpret as noted by others [29]. On
the other hand, the gradient-based method is the technique that
necessitates fewer parameters as it only needs the input image
and the class label to generate the map. When comparing the
methods in Figure 2 and 3, it is clear that the gradient method
often outputs noisy maps while the other methods produce
clearly defined regions of interest.

Several discrepancies between the different methods are
illustrated in Figure 3, revealing 5 broad issues that we discuss
below.

1) Multiple objects of the same class in an image.
When multiple objects are present for the same class
(kites, guinea pigs, and dandie dinmont images), the four
methods provide different answers. For example, in the
case of the guinea pig where three of them are present in
the image, Grad-CAM highlighted a part of all guinea
pigs, while for Extremal perturbation and DeepCover,
only one animal is highlighted.

2) Different salient regions. When only one object of the
image represents the class, the area of interest differs
between maps. For the impala example, the gradient-
based saliency highlights all the impala and disregards
the background, while the Extremal map shows only a
part of the animal’s face. Grad-CAM and DEEPCOVER,
however, focus the attention on the impala’s horn. All
four methods include part of the two ears.

3) Background bias to predict the class. Beyond the
object of interest, some techniques select the background
to be a salient region. DEEPCOVER, for example,
predicts the kite image with both a part of the sky and
one of the kites and uses the background images of the
kakatoe image to base its prediction without considering
the animal’s face.

4) Multiple salient regions to predict an output image.
The number of salient regions for an image may vary
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Fig. 3. Difference between saliency maps. We compare state-of-the-art saliency methods by requiring that the saliency maps only included the minimum
needed set of pixels to predict the input image class. From left to right: input image, gradient-based saliency, Grad-CAM, Extremal perturbation, and
DEEPCOVER.

depending on the technique and the input image. Grad-
CAM found three areas of interest for the guinea pig,
while only two are found for the Extremal method for
the impalas, and one area is highlighted by DEEP-
COVER for the kite prediction. Having multiple blobs or

one big batch to represent the class can be a problem as
one region might be enough to predict the image output
in some cases, while in other situations, we might want
to detect all the parts in an image that explains the DNN
output prediction.
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5) No salient region overlaps between the saliency maps.
One of the most complex problems found while compar-
ing the methods was when there were no overlaps be-
tween the maps. To predict the kakatoe, the saliency be-
tween Grad-CAM, Extremal and DEEPCOVER barely
overlaps. However, all those regions are sufficient to
predict the output of the image class. It raises the
question of which areas the network really used to make
its decision, and what is the first used region to classify
an image.

One limitation of our experiments is the computation of the
running time. We estimated timing when finding a saliency
map that predicted the input class. It required running the
prediction for the Extremal method many times, which is more
time consuming than using the first generated map.

V. CONCLUSION

In this paper, we compared four state-of-the-art saliency
methods (Gradient, Grad-CAM, Extremal Perturbation and
DEEPCOVER). We show that although all methods provide
insightful saliency maps, some key differences remain. Indeed,
two techniques can highlight a different area of what seems
to be the region of interest for an image. We demonstrate that
judging which method is the most accurate is not trivial as the
generated saliency maps are supposed to reflect the network
decision and not the user interpretation.
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vance quantification in explainable ai: A causal problem,”
in International Conference on Artificial Intelligence and
Statistics. PMLR, 2020, pp. 2907–2916.

[17] M. Sundararajan and A. Najmi, “The many shapley val-
ues for model explanation,” in International Conference
on Machine Learning. PMLR, 2020, pp. 9269–9278.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should
i trust you?” explaining the predictions of any classifier,”
in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining,
2016, pp. 1135–1144.

[19] R. C. Fong and A. Vedaldi, “Interpretable explanations of
black boxes by meaningful perturbation,” in Proceedings
of the IEEE international conference on computer vision,
2017, pp. 3429–3437.

[20] R. Fong, M. Patrick, and A. Vedaldi, “Understanding
deep networks via extremal perturbations and smooth

Authorized licensed use limited to: CSIRO Information Technology Services. Downloaded on January 31,2022 at 13:47:02 UTC from IEEE Xplore.  Restrictions apply. 



masks,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2019, pp. 2950–2958.

[21] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model
for spectra-based software diagnosis,” ACM Transactions
on software engineering and methodology (TOSEM),
vol. 20, no. 3, pp. 1–32, 2011.

[22] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow,
M. Hardt, and B. Kim, “Sanity checks for saliency maps,”
in Advances in Neural Information Processing Systems,
2018, pp. 9505–9515.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[24] Y. Sun, H. Chockler, X. Huang, and D. Kroening, “Ex-
plaining image classifiers using statistical fault local-
ization,” in European Conference on Computer Vision.
Springer, 2020, pp. 391–406.
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