

Australia's National Science Agency

# **MongeNet** : Efficient Sampler for Geometric Deep Learning

**Leo Lebrat**<sup>†</sup>, Rodrigo Santa Cruz<sup>†</sup>, Clinton Fookes, and Olivier Salvado. <sup>†</sup>equal contribution

THE AUSTRALIAN **E**•**HEALTH** RESEARCH CENTRE





## Measuring distance between triangle meshes

Sampling points on surfaces is a cornerstone element of Geometrical Deep Learning

- Fast and balanced metric during training (Sampling + Chamfer).
- **Steady** and **reliable** evaluation during testing (Sampling + EMD + Chamfer Normal).

However, current sampling method is based on random uniform sampling

Given the triangle  $T = (V^1, V^2, V^3)$  the point p is sampled

$$p = (1 - \sqrt{u_1})V^1 + \sqrt{u_1}u_2V^2 + (1 - u_2)\sqrt{u_1}V^3,$$

with  $u_1, u_2 \sim U([0, 1])$ 

Points are sampled independently and are unevenly distributed.



## **Undersampled Areas and Clamping**





## Measuring distance between triangle meshes

In this paper we propose a sampler based on **Optimal Transport** (OT), that given a Dirac masses budget (point cloud) minimizes the OT-distance to the **triangle mesh**.





#### Learn to sample

The sampling is learned in a supervised manner:

Given sampling **S** and  $\ell$  sampled points, MongeNet  $\mathbf{f}_{\theta}(t, \ell, p)$  minimizes:

$$\mathcal{L}(t,\ell,p,\mathbf{S}) = \underbrace{W_2^{\varepsilon}(\mathbf{f}_{\theta}(t,\ell,\mathbf{p}),\mathbf{S})}_{\text{fidelity}} - \alpha \underbrace{W_2^{\varepsilon}(\mathbf{f}_{\theta}(t,\ell,\mathbf{p}),\mathbf{f}_{\theta}(t,\ell,\mathbf{p'}))}_{\text{diversity}}$$

with  $W_2^{\varepsilon}$  the  $\varepsilon$ -regularized optimal transport [Cuturi, 2013, Feydy et al., 2020] and  $\mathbf{p}, \mathbf{p}' \sim \mathcal{N}(0, 1)$ 

- We uniformly **remap** all of the triangles to a unitary triangle (scale, rotation and translation invariant learning problem).
- We develop a online edge-splitting scheme to sample arbitrarily large number of points.
- We encourage **diversity** of the resulting sampling patterns.



## Qualitative results

#### 150K points : MongeNet = evenly distributed point-cloud



#### Quantitative results

We measure the approximation error for 10k sampled points on the ShapeNet dataset.



## Mesh Approximation Application Using Point2Mesh









- MongeNet is **fast** and involves a **limited overhead**.
- It can replace seamlessly **pytorch3D** sampling\_points\_from\_mesh.
- A better sampling allows:
  - Training faster and better models.
  - Reducing the variance and the approximation error for evaluation.

Our code is freely available:

#### https://github.com/lebrat/MongeNet

