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Measuring distance between triangle meshes

Sampling points on surfaces is a cornerstone element of Geometrical Deep Learning

* Fast and balanced metric during training (Sampling + Chamfer).
e Steady and reliable evaluation during testing (Sampling + EMD + Chamfer Normal).

However, current sampling method is based on random uniform sampling

Given the triangle "= (V'1,V?2,V3) the point p is sampled

p=(1—u)V! + VurugV? + (1 — ug)y/u V3,
with Ui, uUg ~ U([Oa 1])

Points are sampled independently and are unevenly distributed.



Undersampled Areas and Clamping




Measuring distance between triangle meshes

In this paper we propose a sampler based on Optimal Transport (OT), that given a Dirac
masses budget (point cloud) minimizes the OT-distance to the triangle mesh.

Classical Sampling MongeNet Sampling %



Learn to sample

The sampling is learned in a supervised manner:

Given sampling S and ¢ sampled points, MongeNet fy(t, £, p) minimizes:

,C(t, ga p, S) — 11’726 (ff} (ta Z’ p)v SZ _al“V‘Zg(f(‘)(tv ea p)a fﬁ(ta E, p/)z
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with W35 the e-regularized optimal transport [Cuturi, 2013, Feydy et al., 2020]
and p,p’ ~ N(0,1)

*  We uniformly remap all of the triangles to a unitary triangle (scale, rotation and
translation invariant learning problem).

 We develop a online edge-splitting scheme to sample arbitrarily large number of points.

* We encourage diversity of the resulting sampling patterns. %



Qualitative results

150K points : MongeNet = evenly distributed point-cloud

Template mesh Uniform sampling

Mongenet



http://www.youtube.com/watch?v=r3TGwMtRsec

Quantitative results

We measure the approximation error for 10k sampled points on the ShapeNet dataset.
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Mesh Approximation Application Using Point2Mesh
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[Hanocka et al., Point2Mesh, SIGGRAPH 2020]
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http://www.youtube.com/watch?v=AySwwJuPqOk&t=9
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Summary

® MongeNet is fast and involves a limited overhead.
® It can replace seamlessly pytorch3D sampling_points_from_mesh.

® A better sampling allows:
o Training faster and better models.
o Reducing the variance and the approximation error for evaluation.

Our code is freely available:

https://github.com/lebrat/MongeNet
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