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Introduction

Sampling is a ubiquitous part of geometrical deep learning that op-
erates with meshes. It allows the computation of geometric loss by
converting a set of triangles into point-cloud.
Such a sampler must be

Fast
Differientiable
Robust and producing low-variance estimate

Limitation of Random Uniform Sampler (RUS)

Points are drawn idependently.
Sampling patterns are subject to clustering.
Distance estimate with a low number of points are subject to a
large variance.

Optimization on a measure space

The triangle mesh T can be written as a measure µT
c carried by a

union of simplexes

µT
c (B) = 1

|T |
∑
ti∈T

∫
B∩ti

dH2(x).

Supervised learning problem

Given a sampling S and ℓ sampled points, MongeNet fθ(t, ℓ, p) mini-
mizes:

L(t, ℓ, p, S) = W ε
2 (fθ(t, ℓ, p), S)︸ ︷︷ ︸

fidelity
−α W ε

2 (fθ(t, ℓ, p), fθ(t, ℓ, p′))︸ ︷︷ ︸
diversity

withW ε
2 the ε-regularizedoptimal transport [1, 2] andp, p′ ∼ N (0, 1),

and fθ a MLP.

Encouraging entropic samples

The point generation is conditioned by p. Two different p, p′ result
in a different sampling pattern.

Deterministic sampling generates structured patterns

Dimensionality reduction of the learning problem

We project the triangle of R3 on
a canonical space with angle pre-
serving transformation to reduce the
complexity of the learning task.

Runtime vs. Pytorch3D

# Faces 10k 20k 30k 40k 60k 80k
RUS 1.14 ms 1.50ms 1.53ms 1.52ms 1.53ms 1.53ms
MongeNet 2.89 ms 5.41 ms 7.90 ms 10.5 ms 16.0 ms 21.7 ms

Applications

We establish the usefulness of the proposed method

For metric evaluation

MongeNet reduces the evaluation variance.

In a learning context with Point2mesh [3]
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MongeNet allows training geometric deep learning models better
and faster.

Easy to use

Code repo
https://github.com/lebrat/MongeNet

Contact us
fon022@csiro.au or leo.lebrat@gmail.com.
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