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Introduction

Sampling is a ubiquitous part of geometrical deep learning that op-
erates with meshes. It allows the computation of geometric loss by
converting a set of triangles into point-cloud.

Such a sampler must be

= Fast
= Differientiable

= Robust and producing low-variance estimate

Limitation of Random Uniform Sampler (RUS)

= Points are drawn idependently.
= Sampling patterns are subject to clustering.

= Distance estimate with a low number of points are subject to a
large variance.
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Supervised learning problem

Given a sampling S and ¢ sampled points, MongeNet fy(¢, £, p) mini-
mizes:
E(ta gvpa S) — Wg(fQ(tirgv p)? S)J-@W;(fg(t, ga ].227 fﬁ(tv f, p,)),
fidelity diversity
with WS the e-reqularized optimal transport [1,2] and p, p’ ~ N(0, 1),
and f, a MLP.

Encouraging entropic samples

The point generation is conditioned by p. Two different p, p’ result
In a different sampling pattern.
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Optimization on a measure space

The triangle mesh T can be written as a measure p! carried by a
union of simplexes

(B = X [ )

Dimensionality reduction of the learning problem

We project the triangle of R’ on

a canonical space with angle pre-

4) Reflection serving transformation to reduce the
2 ererieseine complexity of the learning task.

1) Translation

Runtime vs. Pytorch3D

# Faces

.

MongeNet 2.89 ms 5.41ms 7.90 ms 10.5 ms 16.0 ms 21.7 ms

Applications

We establish the usefulness of the proposed method

= For metric evaluation

Sampling Method:
0.005 Bl Random uniform
Bl MongeNet
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MongeNet reduces the evaluation variance.

* In a learning context with Point2mesh [3]

and faster.

src.mesh_sampler import MeshSampler |
mesh_sampler = MeshSampler(mongenet, num sampled points,compute normals, bs).to('cuda')
points, face ids, normals mesh sampler(vertices, faces, lenghts)

Code repo
https://github.com/lebrat/MongelNet

Contact us
fon022@csiro.au Or leo.lebrat@gmail. com.
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