

Introduction

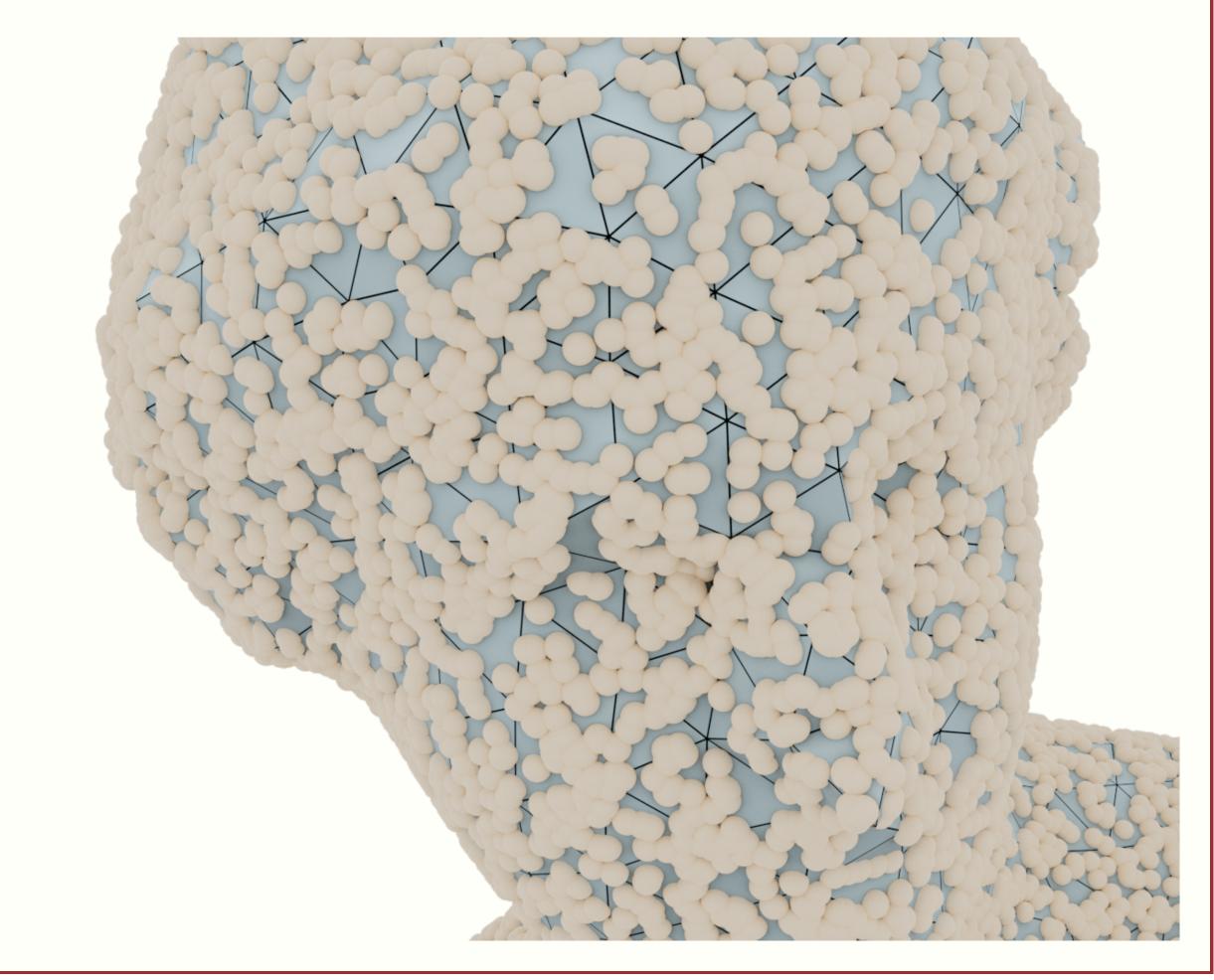
Sampling is a ubiquitous part of geometrical deep learning that operates with meshes. It allows the computation of geometric loss by converting a set of triangles into point-cloud.

Such a sampler must be

- Fast
- Differientiable
- Robust and producing low-variance estimate

Limitation of Random Uniform Sampler (RUS)

- Points are drawn idependently.
- Sampling patterns are subject to clustering.
- Distance estimate with a low number of points are subject to a large variance.



Optimization on a measure space

The triangle mesh T can be written as a measure μ_c^T carried by a union of simplexes

 $\mu_c^T(B) = \frac{1}{|T|} \sum_{t:\in T} \int_{B\cap t_i} d\mathcal{H}^2(x).$

MongeNet efficient Sampler for Geometric DL

Léo Lebrat^{*,†}, Rodrigo Santacruz^{*,†}, Clinton Fookes[†] & Olivier Salvado^{‡,†} CSIRO*, DATA 61[‡], QUT[†]

Supervised learning problem

Given a sampling S and ℓ sampled points, MongeNet $f_{\theta}(t, \ell, p)$ minimizes:

 $\mathcal{L}(t,\ell,p,\mathbf{S}) = W_2^{\varepsilon}(\mathbf{f}_{\theta}(t,\ell,\mathbf{p}),\mathbf{S}) - \alpha W_2^{\varepsilon}(\mathbf{f}_{\theta}(t,\ell,\mathbf{p}),\mathbf{f}_{\theta}(t,\ell,\mathbf{p'}))$ fidelity diversity with W_2^{ε} the ε -regularized optimal transport [1, 2] and $\mathbf{p}, \mathbf{p'} \sim \mathcal{N}(0, 1)$,

and f_{θ} a MLP.

Encouraging entropic samples

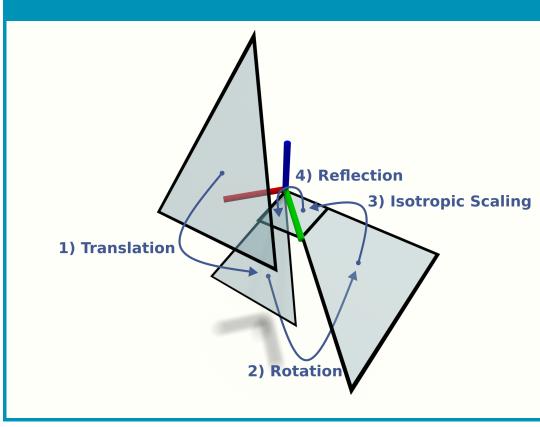
. .

The point generation is conditioned by **p**. Two different \mathbf{p}, \mathbf{p}' result in a different sampling pattern.

Deterministic sampling generates structured patterns



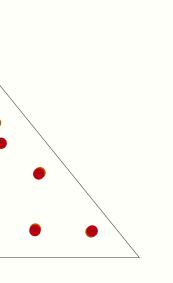
Dimensionality reduction of the learning problem

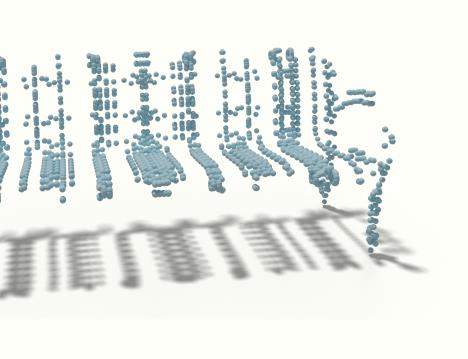


We project the triangle of \mathbb{R}^3 on a canonical space with angle preserving transformation to reduce the complexity of the learning task.

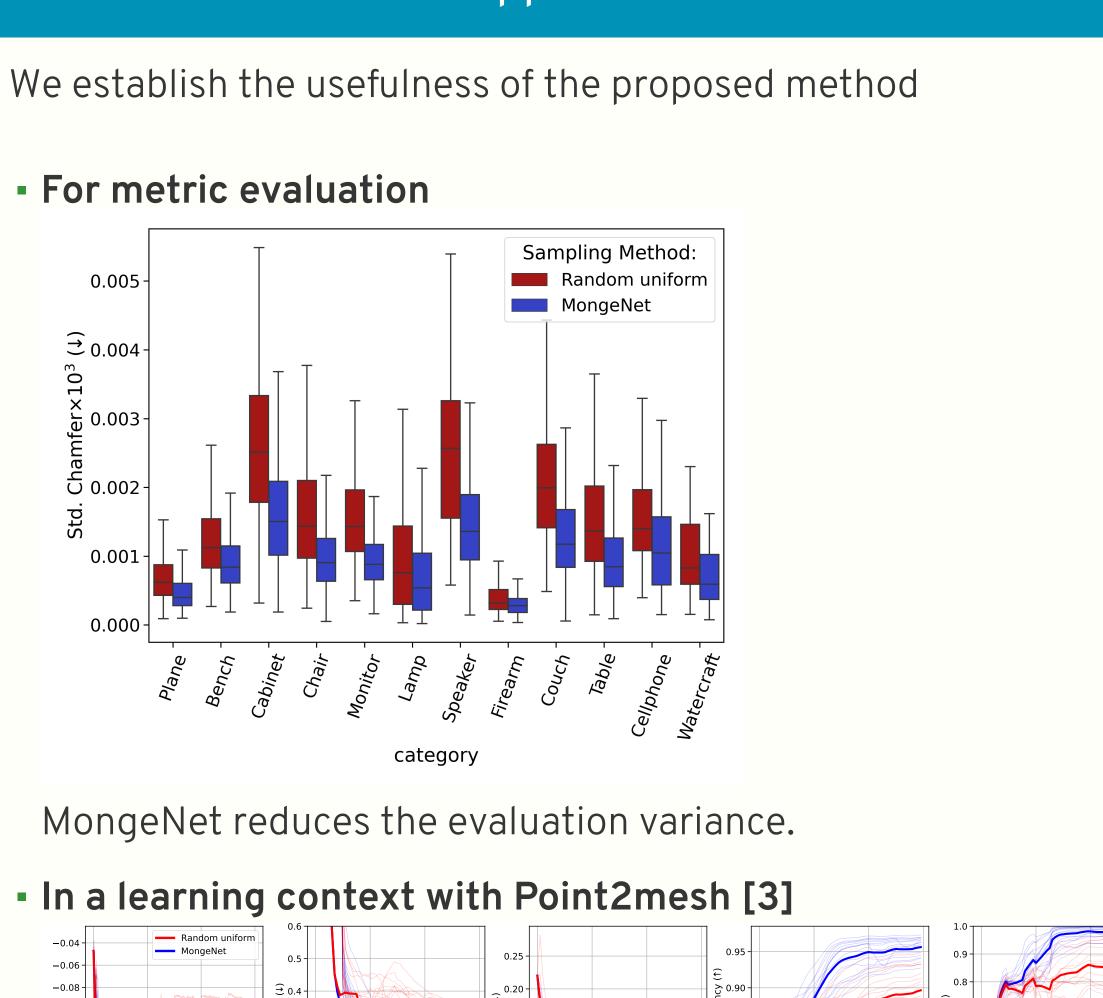
Runtime vs. Pytorch3D

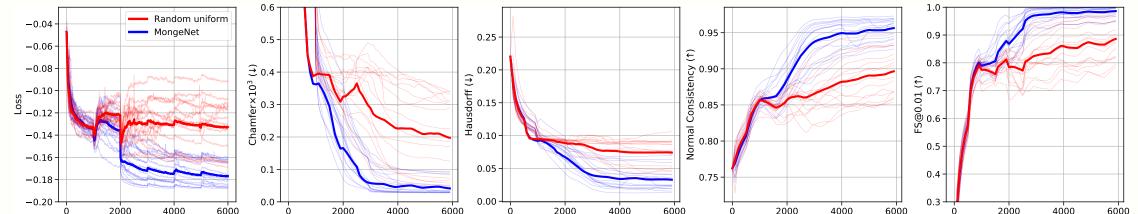
# Faces	10k	20k	30k	40k	60k	80k
RUS	1.14 ms	1.50ms	1.53ms	1.52ms	1.53ms	1.53ms
MongeNet	2.89 ms	5.41 ms	7.90 ms	10.5 ms	16.0 ms	21.7 ms





For metric evaluation





MongeNet allows training geometric deep learning models better and faster.

MeshSampler src.mesh sampler mesh_sampler = MeshSampler(mongenet, num_sampled_points, compute_normals, bs).to('cuda')
points, face_ids, normals = mesh_sampler(vertices, faces, lenghts)

Code repo

https://github.com/lebrat/MongeNet

Contact us fon022@csiro.au Or leo.lebrat@gmail.com.

Acknowledgment This work was funded in part through an Australian Department of Industry, Energy and Resources CRC-P project between CSIRO, Maxwell Plus and I-Med Radiology Network.

[1] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural information processing systems, pages 2292–2300, 2013. [2] Jean Feydy, Joan Glaunès, Benjamin Charlier, and Michael Bronstein.

- Fast geometric learning with symbolic matrices. Advances in Neural Information Processing Systems, 33, 2020.
- [3] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: A self-prior for deformable meshes. ACM Trans. Graph., 39(4), 2020.

NE 19-25

Applications

Easy to use

References